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Abstract—Flexible demand side energy and reserve procure-
ment has the potential to improve the overall operation of the
grid. However, as argued in previous studies, this flexibility might
cause congestion in distribution grids. In this paper, we improve
the conventional distribution locational marginal price (DLMP)
method, while integrating congestion free energy and reserve
provision from buildings in distribution grids. First, robust day-
ahead (DA) DLMPs are calculated to account for unmodelled
dynamics of flexible loads. Second, using dual decomposition,
the data sharing requirements between the aggregator and the
distribution system operator (DSO) are minimized. Third, a
sensitivity-based real-time (RT) adjustment method is presented
to remove conservatism of DA robust DLMPs. Case studies are
performed on a benchmark distribution system. The numerical
results show that the proposed technique efficiently handles
load uncertainties and data sharing requirements, improving the
practicality of the conventional DMLP method.

Index Terms—Distributed Congestion Management, Real-time
Adjustment, Robust Optimization, Flexible Buildings, Distribu-
tion Locational Marginal Pricing (DLMP).

I. I NTRODUCTION

Due to their high contribution in greenhouse gas emissions,
it is important to operate buildings in a more energy efficient
manner [1]. This motivation along with advancements in
controllable building models [2]–[4] have spurred researchers
in developing energy efficient and grid-friendly building op-
eration strategies [3]–[6]. With similar goals, in our previous
work [7]–[10], we presented buildings as a reliable resource
for procuring flexible energy and reserve. We showed that
flexible operation of buildings can improve their operational
cost, while providing consumer satisfaction and grid side
reserves. In this paper, we significantly extend our previous
works, incorporating methods to account for uncertain flexible
demand when integrated in congested distribution grids.

The issue of congestion management due to the introduction
of price responsive demand was highlighted in [11]–[13]. One
of the main causes for congestion was outlined as a result
of the weakening of the correlation between the wholesale
electricity price and demand. The authors in [11], [12] pro-
vided both a holistic view and quantitative comparisons of
various congestion alleviating methods. The work in [13] was
more focused towards the comparison of common congestion
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alleviating solution techniques. Focusing on a particular type
of price-based control, the authors in [14]–[16] proposed the
concept of DA DLMP to alleviate congestion due to flexible
loads. The DLMP method (1) provided the lowest possible
theoretical cost to alleviate congestion and (2) was realizable
due to its similarity with the existing locational marginal
price (LMP) concept at the transmission level. However, while
calculating DA DLMPs, the authors in [14]–[16] did not
account uncertainties in predicting flexible demand.

Recently, [17] presented a new DLMP method to account
for uncertain flexible demand. A sensitivity-based iterative
solution was obtained after quantifying the prediction error’s
probability distribution. However, the proposed method of [17]
relied on the DSO to predict uncertain flexible demand. This
assumption in our opinion suffers from two major practical
drawbacks. First, predicting large scale flexible demand may
overburden the operation of the DSO. This is because the
DSO is primarily responsible for maintaining/operating the
grid and has little or no interest in commercial (maximizing
profit) activities. Second, due to modeling complexities and/or
privacy concerns, load owners (users) may not be able to
share with the DSO, the necessary information required for
predicting their demand. Apart from drawback related to
data sharing requirements, another important consideration
of RT adjustment is also found missing in uncertain DLMP
framework of [17]. This consideration is important because
methods to mitigate uncertainties cause models to deviate
from their deterministic (optimal) behavior [5], [6], [18]. For
DLMPs, this deviation would influence the cost of energy
delivery to the customer. Since uncertain predictions are much
more accurate closer to their actual realization [19], there
must exist a method to perform RT or near RT adjustment of
uncertain DLMPs. It is also shown from pilot projects [20],
[21] that when controlled near RT, flexible loads operate closer
to their preferred behavior. Generally, the above mentioned
privacy concerns and uncertainty handling techniques are also
recognized as one of the major hurdles for realizing smart
distributed energy resources in the future grid [22]–[24].

Regarding the above mentioned missing data sharing con-
straints of the DLMP framework, one can propose a distributed
solution technique. These techniques with respect to integrat-
ing flexible resources in the grid were reported in [25]–[31].
Recent studies in [25]–[28] proposed methods based on alter-
nating direction method of multipliers (ADMM) [32]. Though
these methods provided fast convergence, these works did not
consider the restriction of the network and the flexible demand
information to the DSO and aggregators, respectively. These
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works assumed that network information (complex voltage and
angle) is also available at the aggregator level to promote a
more decentralized solution. However, our focus is to achieve
a distributed approach, which promotes coordination of the
involved entities while preserving their individual privacy.
In [30], [31] some privacy between aggregators and the DSO
was considered. Nevertheless, in the proposed methods of [30],
[31], the DSO solves an optimization problem. This could
cause an increase in the overall computation requirements
of the DSO. Another focus of this paper is to consider
privacy of uncertain flexible demand in combination with the
RT adjustment. According to our knowledge, this has not
been addressed in any of the relevant existing literature on
distributed solution techniques [25]–[31].

To summarize, the current DLMP framework [14]–[17]
suffers from important practical aspects of (i) handling un-
modeled dynamics of flexible loads, (ii) minimizing data
sharing requirements and (iii) the intra-day (RT) adjustments
of the already obtained DA DLMPs. Apart from the above
mentioned methodological shortcomings, an implementation
consideration found missing in the current DLMP framework
is the inclusion of robust operations of buildings.

From the above mentioned deficiencies of the DLMP
method, in this paper, we solve (i) and (ii) by forming
robust DLMPs and calculating them in a distributed manner.
The proposed approach relieves the DSO from predicting
the uncertain demand. Resultantly, uncertainties in flexible
demand are handled locally (privately) by aggregators. The
main reason for locally handling uncertainties is the fact that
usually aggregators are commercial and competitive entities.
As a result, compared to the DSO, aggregators have a higher
motivation to account for un-modeled dynamics of their loads.
Moreover, aggregators might also not feel comfortable, sharing
their sensitive load data with the DSO. And consistent with
the original DLMP framework [14]–[17], we also keep the
network information (feeder and line loadings) only to the
DSO. Furthermore, in our proposed method the DSO is only
assigned to evaluate an inexpensive linear algebraic term,
which helps to minimize its overall computation requirements.
The deficiency number (iii) is erected using sensitivity-based
RT adjustment of the already obtained DA DLMPs. The
RT adjustment follows a receding horizon manner, utilizing
updated (actual) states of flexible loads and keeping the
overall local information handling framework consistent. By
addressing the above mentioned deficiencies, this paper not
only improves the current DLMP framework, but also presents
a novel analysis on handling distributed uncertain flexible
demand and its relationship with the RT adjustment.

This paper also significantly extends our previous work
in [10]. The major improvements in terms of new formu-
lations and the proposed solution methodologies consist of
(1) formulating robust counterparts of DLMPs to account for
uncertainties in predicting flexible demand, (2) solving for
robust DLMPs using a privacy preserving distributed approach
and (3) proposing the RT adjustment solution to account for
conservatism of the already obtained robust DA DLMPs. From
the major contributions perspective, using a two-step approach,
this paper bridges the gap between deterministic and uncertain

DLMPs. In doing so, this paper significantly improves the
distributed DSO-aggregator cooperation framework of [10]
by enabling it to efficiently handle uncertain flexible demand
predictions locally.

Section II explains preliminaries for this paper. The pro-
posed robust DA DLMPs with their RT adjustment is in Sec-
tion III. Section IV presents simulation setup and some key
results. Section V provides conclusion and future works.

NOTATIONS

For each zone at time stept (discretek):

d̂t ∈ R
nid External and internal disturbances

ρ, ∆p, cp Density of air, pressure difference across the
fan, and specific heat capacity of air

τ iri, αwi Transmittance of windowi and absorptivity
coefficient of wall, respectively

Ai
ri, Awi Total area of windowi and total area of the

wall wi, respectively

Cwi, Cri Thermal capacitance of wall and room

nb,i, nf , nr Number of buildings, floors and rooms

Nwi, Nri The set of all connected nodes to walls and
the room, respectively

pheat,k, pfan,k Heating and fan power [kW]

pk ∈ R
nirniu Input schedule ([um,k rm,k]’) [kg/sec]

q
′′

radri
, q̇intri Solar radiation and internal heat generation

in the room, respectively

ri Equal to0 for internal and1 for peripheral
walls.

rm,k ∈ R
nir HVAC’s mass flow reserve schedule [kg/sec]

Rij Thermal resistance between nodei andj

Twi, Tri, Tsi Temperature of walls, rooms and HVAC’s
supply

um,t ∈ R
niu HVAC’s mass flow energy schedule [kg/sec]

wi, ri number of walls and rooms

xt ∈ R
n Thermal state vector [deg C]

For aggregatori at discrete time stepk:

d̂i,k ∈ R
nd,i External and internal disturbances

wi,k ∈ R
nd,i Disturbance uncertainty

pi,k ∈ R
np,i Input schedule ([ui,k r i,k]′)

xi,k ∈ R
nx,i Thermal states

n, niu , nid Number of states, HVACs and disturbances

nx,i, nd,i, np,i Number of states (nb,i·nf ·nr·n), dis-
turbances (nb,i·nf ·nr·nid ) and inputs
(nb,i·nfnr·niu ·nir )

For modeling market:
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β Price sensitivity coefficient [$/(kWh)2]

c0,k Baseline price [$/kWh]

zk Reserve price [$/kWh]

II. PRELIMINARIES

A. Zone Model

To predict building dynamics, a resistance-capacitance (R-
C) based zone modeling is deployed [1]. The zone models
are then aggregated to obtain the thermal model of the whole
building. A variable frequency drive fan based HVAC system
is considered as a source of flexibility in the modeled zone of
each building. In principle, by modulating the fan speed, the
energy consumption as well as the temperature of the room is
controlled. An R-C (lumped) model of a zone contains thermal
resistances and capacitances, representing heat transfer and
heat storage, respectively. The differential equations governing
temperature evolutions of walls and room become:

dTwi

dt
=

1

Cwi





∑

j∈Nwi

Tj − Twi

Rij
+ riαwiAwiq

′′

radri



 , (1a)

dTri

dt
=

1

Cri





∑

j∈Nri

Tj − Tri

Rij
+ ṁricp (Tsi − Tri)

+ wiτ
i
riA

i
riq

′′

radri
+ q̇int

]

. (1b)

Details regarding units and parameters of the R-C model with
the method to translate them from physical quantities to state-
space models is given in [1]. The nonlinear relationship of
temperature of the zonext with the HVAC mass flow rateum,t

can be generalized as:

ẋt = Axt + g(xt, um,t) + d̂t. (2)

The expression in (2) is of nonlinear nature. Since the
most efficient controllers are obtained for linear systems, the
nonlinear model described above is linearized and discretized
using sequential quadratic programing and zero order hold,
respectively [33]. In [33], it is shown that linearizing around
the usual operating point does not introduce significant errors.
This is mainly because the temperature range of the building
is normally not very large. The resultant discrete time linear
system at stepk is:

xk+1 = Axk +Buum,k + Ed̂k +Brrm,k,

xk+1 = Axk +Baggpk + Ed̂k. (3)

In (3), pk = [um,k rm,k]
′ is used to compactly represent

usual energy and reserve consumption variables. MatricesA,
Bagg andE are of the appropriate sizes. Correspondingly, the
electrical power consumed for heatingpheat,t and fanpfan,t is
given as:

pheat,t(um,t) = um,tcp(Tsi − Tri), (4a)

pfan,t(um,t) =
um,t∆p

ρ
. (4b)

The building model described above is simple, yet it pro-
vides physical interpretation of all of its underlying variables.

This property can be easily exploited to rapidly translate this
model to the form used by state-of-the-art building modeling
tools [34]–[36]. In [10], we showed an example to achieve this
translation for the above described building model.

B. Aggregator Model

The aggregator is responsible for procuring flexibility for
its contracted buildings. The aggregatori augments the zonal
model of (3) to predict thermal states as:

xi,k = Axi,0 + Baggpi,k + Ed̂i,k (5)

In this paper, a liberalized market setting is assumed which
allows loads to bid for reserves and energy provision through
the interruptible load (IL) [37] and the demand response [38]
program, respectively. Practical examples of these programs
can be found in the National Electricity Market of Singa-
pore [39]. In the IL program, aggregators need to reserve some
of its load. If required, this load is curtailed by the system
operator. Hence, to account for system operator’s decision to
curtail or not, the aggregator must predict both curtailed and
not-curtailed temperature trajectories,

xnci,k+1 = Axnc
i,k + Bnc

aggpi,k + Ed̂i,k, (6a)

xci,k+1 = Axnc
i,k + Bc

aggpi,k + Ed̂i,k. (6b)

MatricesBnc
agg andBc

agg in (6a) and (6b) differentiate between
the not-curtailed and curtailed consumptions, respectively. The
not-curtailed trajectory (6a) is similar to (5), as the original
prediction model (5) already contains both the usual energy
and reserve consumption variables. The curtailed trajectory
is predicted by placing zeros at positions ofBc

agg, which
corresponds to the reserve vector (r i,k). This ensures that
the curtailed trajectory has a maximum deviation from the
not-curtailed one i.e. full curtailment of the offered load at
stepk (r i,k = 0). This maximum deviation is then captured
in the model by using only the not-curtailed trajectory at
step k to predict both the not-curtailed (6a) and curtailed
trajectories (6b) for stepk + 1. This couples both the not-
curtailed and curtailed trajectories in the aggregator model,
necessitating co-optimization of both reserves and energy.

1) Co-optimizing Energy and Reserve Schedule:In this
paper, it is assumed that the aggregator similar to its users
shares the same objectives of minimizing the total cost of
energy procurement. The total costJsumi,k

for procuring
energy and reserves by aggregatori is then:

Jsumi,k
= Jumi,k

+ Jrmi,k
−Rrmi,k

, (7)

whereJum/rmi,k
and Rrmi,k

are the cost of energy/reserves
consumption and the revenue due to the allocation of reserves.
Since the global convergence for DLMPs [16] only holds
true for QPs, we are also going to consider quadratic cost
formulation. This is achieved by assuming correlation of
demanddk with the spot priceyk, through a price sensitivity
coefficientβ [11],

yk = c0,k + βdk. (8)
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The procedure for obtaining values ofβ andc0,k is explained
in [11]. Using (8), the cost of consuming energy and placing
reserves for a constant time interval∆t becomes:

Jumi,k
= ykp(um,k)∆t

= c0,kp(um,k)∆t+ β(p(um,k)∆t)2

Jrmi,k
= c0,kp(rm,k)∆t+ β(p(rm,k)∆t)2 (9)

with p(um,k/rm,k) = pheat,k(um,k/rm,k) + pfan,k(um,k/rm,k).
In order to calculate the revenue from placing reserves under
the IL program, we consider the market setting of ILs getting
paid based on their availability1 and presence in the respective
reserve groups2. Due to thermal inertia, buildings can rapidly
vary their power consumption without much loss in comfort
constraints. Hence, we propose to use maximum reserve
priceszk, as cleared in the market, to schedule and calculate
revenue from reserves3 as:

Rrmi,k
= zkp(rm,k)∆t (10)

For constant time interval∆t and conversion factors (see Sec-
tion II-A), substituting (9) – (10) in (7), the total cost for one
zone becomes:

Jsumk
= cTk pk +

1

2
pTkBpk (11)

with,

ck =

[

c0,k
c0,k − zk

]

, B =

[

β 0
0 β

]

, (12)

Similarly, for aggregatori, the total cost at time stepk
becomes:

Jsumi,k
= cT

kpi,k +
1

2
pT
i,kBpi,k. (13)

Here, ck ∈ R
np,i and B ∈ R

np,i×np,i are the augmented
and block diagonal versions ofck and B, respectively. For
both curtailed (6a) and not-curtailed (6b) trajectories, (13)
represents the overall cost for purchasing energy and plac-
ing reserves by the aggregator. Note that when calculating
cost (13), variablesp(um,k) andp(rm,k) and their augmented
vectorpi,k are internally converted to have units of kW.4

C. DLMP Method

The authors in [14]–[16] proposed the DA dynamic tariff
based DLMP method to alleviate congestion in distribution
grids. This procedure is summarized as follows:

1) With the knowledge of network data, the DSO predicts
load and market data to calculate DLMPs, which adhere
to its grid limitations.

1Modeling activation of reserves based on the spot market operation is out
of the scope of this paper.

2The reserve groups represent their member’s response time and output
quality [40].

3From market perspective this means that the reserve provision from
buildings is placed in the highest quality reserve group of the market clearing
engine. This assumption is not far from reality. As in [39], it has also been
mentioned that loads, compared to generators, possess a natural advantage
when providing reserves.

4This is done to keep the notation light and easy to follow. In principle,
the conversion from mass flows in kg/s to kW can be simply done using (4).

2) The aggregators after receiving DLMPs incorporate
them into their energy planning.

3) Finally, the aggregators submit their optimized energy
plan to the spot market.

For the optimal congestion alleviation using DLMPs, the above
mentioned method is carried out by formulating the DSO and
aggregator problems as QPs [16], [17]. This formulation is
only possible with the assumption of DC power flowing across
the network. This means that voltage profiles of the network
are assumed to be flat (1 per unit) and losses are ignored. Since
the focus of this paper is towards the improvement of data
sharing requirements and the uncertainty handling capabilities
of the current DLMP framework [16], [17], we also proceed
with the DC power flow.

The DSO problem for the scope of this paper is then
represented as:

min
p∗

i,k

∑

i∈Ni

∑

k∈Nt

Jsumi,k
(14a)

subject to

− fl ≤
∑

i∈Ni

∑

k∈Nt

DMipi,k ≤ fl (λ
DA−

k , λDA+

k ) (14b)

xci,k+1 = Axnc
i,k + Bc

aggpi,k + Ed̂i,k (14c)

xnci,k+1 = Axnc
i,k + Bnc

aggpi,k + Ed̂i,k (14d)

xmin
i,k ≤ xci,k ≤ xmax

i,k (14e)

xmin
i,k ≤ xnci,k ≤ xmax

i,k (14f)

umin
i,k ≤ Asumpi,k ≤ umax

i,k (14g)

pi,k,A
diffpi,k ≥ 0 ∀i ∈ Ni, ∀k ∈ Nt (14h)

In the above DSO problem,Ni andNt are the total number
of aggregators and time duration respectively. The output of
(14) is the optimal input sequencep∗

i,k for all aggregators.
Note that in this context, optimality is in terms of minimizing
the total cost of the system while satisfying network and
user constraints. Using (14g) and (14h), the actuator limits
of all HVAC systems are constrained. MatricesAsum and
Adiff (∈ R

nb·nbr·niu×np,i) contain vectors [1 1] and [1 -1]
at appropriate entries to compactly represent addition and
subtraction ofum,k and rm,k variables of each zone. Both
curtailed (14c) and not-curtailed (14d) temperature trajecto-
ries are kept feasible through (14e) and (14f), respectively.
If distribution grid containsnLP load points (LPs) andnl

distribution lines, thenD ∈ R
nl×nLP represents power transfer

distribution factor (PTDF). MatrixMi ∈ RnLP×np,i converts
the combined energy and reserve vectors of the aggregators
contained inpi,k to the total power at corresponding LPs of the
grid.5. The Lagrange multipliers (LMs)λDA

k (λDA+

k − λDA−

k )
∈ R

nl) represent sensitivity of binding line limitsfl ∈ R
nl

in (14b). For timek and aggregatori, if the partial Lagrangian
of (14) with only binding line limits is:

L(pi,k, λ
DA
k ) = Jsumi,k

+ λDAT

k (DMipi,k − fl). (15)

5This is done by summing up both usual energy and reserve vectors of
the corresponding aggregators and converting their units from kg/s to kW
using (4).
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Then DLMPs (λdlmpi,k
) with units $/kWh are defined as:

λdlmpi,k
=

∂L

∂pi,k

= c+ Bpi,k + λDAT

k DMi. (16)

From (16), it can be seen that DLMPs consists of two compo-
nents: (1) the (predicted) market data and (2) the distribution
line conditions. Consequently, it can be stated that the current
DLMP framework only attempts to reflect congestion in the
energy planning (cost optimization) of aggregators. It must be
noted that to form a distribution grid market mechanism using
these DLMPs, a more rigorous analysis of these DLMPs is
required. In [10], [17], some possible regulatory and settlement
arrangements regarding the collected revenue from DLMPs are
discussed. Since, the focus of this paper is towards uncertainty
handling, the design of a market layer on top of DLMPs is
not considered.

Aggregatori after receiving DLMPs from the DSO, obtains
its final energy plan as:

min
p∗

i,k

∑

k∈Nt

λT
dlmpi,k

pi,k +
1

2
pT
i,kBpi,k (17)

subject to

(14c)− (14h) ∀k ∈ Nt

Under deterministic settings and strictly convex (QP) formu-
lations, both aggregators (17) and the DSO (14) solutions
converge to a unique solution [16].

Table I
COMPARISON OFDATA REQUIREMENTSBETWEEN CONVENTIONAL (A)

AND PROPOSEDMETHOD (B)

Entity
Load Data Market Data Network Data

A B A B A B

DSO ✕ ✕

Aggregator ✕ ✕
Load Data: parameters for flexible loads models, Market Data:energy, reserve and sensitivity price

Network Data: Distribution grid lines, limitations and inflexible (base) loads

Fig. 1. Flow chart of the proposed method. See Fig. 3 and Fig. 4 for more
information regarding DA DLMP and RT adjustment procedures respectively.
This flow chart shows the generic organization of the whole procedure. Note
that the exact timing for running the proposed methods will depend on
predefined market rules.

III. D ISTRIBUTED ROBUST CONGESTIONALLEVIATION

As motivated earlier, the DSO should be relieved of the duty
to estimate energy consumption of its underlying uncertain
loads. In this section, we propose a method to alleviate con-
gestion due to consumption from uncertain flexible buildings
in a distributed manner. The proposed method achieves this in
two steps: (1) calculating robust DA DLMPs and (2) applying
RT adjustment.

Both steps, calculating DA DLMPs and their RT adjustment,
are carried out in a distributed manner. The term distributed
here refers to handling local information privately. This means
that sensitive information (load/network data) is only pro-
cessed by the corresponding local entity (aggregators/DSO)
to obtain local solutions6. These local solutions are then
coordinated between the DSO and aggregators to obtain the
final solution. It must be noted here that the coordination
procedure to arrive at the final procedure is however different
for both steps. For DA DLMPs, we propose an iterative
procedure (Section III-A2), and for the RT adjustment we
design a clearing method (Section III-B2) for sensitivity-based
locally calculated demand bids (Section III-B1).

Compared to the conventional DLMP methods, Table I
presents the improvement in the data requirements from the
proposed method. Note that in the proposed method of this
paper the DSO never estimates any load and/or market data.
Also, the proposed method does not require any additional data
requirements as compared to the conventional DLMP method.
The Flow chart depicting the overall working of the proposed
method is presented in Fig. 1.

A. Robust Day-ahead DLMPs

The pictorial representation of the proposed method is given
in Fig. 3. Note that in this method for computing DLMPs,
only prices are iterated between aggregators and the DSO.
Hence, the local information of the DSO (grid data) and ag-
gregators (load data) are kept completely private. Furthermore,
aggregators are only operating within bounded load dynamics,
to account for disturbance uncertainties.
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4
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D
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tu
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[d
eg

C
/h

r]

Bounds
Measured Disturbance

Fig. 2. Measured disturbances of the zonal model [18].

1) Uncertainties in Disturbance:The zonal model de-
scribed in (3) experiences both external and internal distur-
bances. As seen from (1), there exists two disturbance sources:
(i) external disturbances, experienced due to solar radia-
tion q

′′

radri
and (ii) internal disturbances, caused by electronic

6This local data handling for both methods can be clearly observed in Fig. 3
and Fig. 4 for DA DLMPs and RT adjustment methods respectively.
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components and occupancyq̇int. Even though it is extremely
hard to predict the actual probability distribution to estimate
these disturbances, their worst-case bounds can readily be
obtained by observing historical data [18] (See Fig. 2). Ifwk

is a stochastic disturbance entering the zonal model additively,

xk+1 = Axk +Baggpk + E(d̂k + wk), (18)

then we assumewk ∈ W to be bounded. The polyhedral
setW = {wk : ‖wk‖∞ ≤ σk} represents a box-constrained
disturbance uncertainties set. The bounded values represented
by σk can be considered asl∞ norm bound of the observed
uncertainty. The two main advantages of representing distur-
bance as a polyhedral setW are: (1) it is easily realizable from
historical data [18], and (2) it helps in preserving the structure
of the optimization problem. Similar to (18), aggregators can
use the augmented version of (6) as:

xci,k+1 = Axnc
i,k + Bc

aggpi,k + E(d̂i,k +wi,k) (19)

xnci,k+1 = Axnc
i,k + Bnc

aggpi,k + E(d̂i,k +wi,k) (20)

Uncertainties Robustification:The polyhedral disturbance
set of Section III-A1 is included in the optimization framework
of aggregators by forming the robust counterparts of [(19),
(20)]. This can be achieved by forming the dual of these
constraints. Consider the uncertain curtailed states update
equation of (19)7:

max
wi,k∈W

xci,k+1 = Axnc
i,k + Bc

aggpi,k + E(d̂i,k +wi,k). (21)

The uncertain part of (21) can be separated as:

max
wi,k

Ewi,k (22a)

s.t. wi,k ≤ σi,k (λ+
wi,k

) (22b)

−wi,k ≤ σi,k (λ−
wi,k

) ∀i ∈ Ni, ∀k ∈ Nt, (22c)

and replaced by its associated dual,

min
λ

+
wi,k

,λ−
wi,k

λ
+
wi,k

σi,k + λ
−
wi,k

σi,k (23a)

s.t. λ
+
wi,k

− λ
−
wi,k

= E (23b)

λ
+
wi,k

,λ−
wi,k

≥ 0 ∀i ∈ Ni, ∀k ∈ Nt. (23c)

By duality, any feasible (λ+
wi,k

, λ−
wi,k

) in (23) will be the
upper bound for the maximization of (22). Hence, we can
drop the minimization term in (23) and due to strong duality
in linear programming [41] the achieved solution for both
primal and dual will be the same. The robust counterpart of
the original aggregator problem can then be completed by
including [(23a) – (23c)] in (17). The final robust counterparts
for aggregators and the DSO problem are shown in Sec-
tion VI-A. Section VI-B presents the global convergence proof
for the robust DSO and aggregators problems.

The global optimality proof in Section VI-B shows that the
robust solution, accounting for the worst-case disturbances,
is unique for both the DSO and aggregators. Essentially, this
means that the DSO must deploy identical polyhedral sets as

7The robust counterpart of the not-curtailed constraint (20) follows exactly
the similar procedure.

Fig. 3. The coordination between the DSO and the aggregator for calculating
distributed DA DLMPs. The DSO only passes LMs (prices) connected
to (14b).

aggregators for calculating its robust DLMPs. In the next sub-
section, we relieve the DSO from predicting any disturbance
sets by proposing an iterative-based solution technique.

2) Iterative-based Distributed DLMPs:The price iterations
shown in Fig. 3 are achieved by decomposing the origi-
nal problem into the respective independent subproblems. In
general, this decomposition is obtained by exploiting partial
duality (dual of partial constraints) of the original problem.
The partial LMs then serve as coordination variables between
the master (DSO) and local subproblems (aggregators). Also
in this paper, the coupling constraint between the local sub-
problems and the DSO problem is given by (14b). Consider
the Lagrangian of the robustifed DSO problem (36) with
constraints only related to the input vectorpi,k:

L(pi,k, λ
DA+

k , λDA−

k , νci,k, ν
nc
i,k, µ

+sum
i,k , µ−sum

i,k , µdiff
i,k , µ

pi,k

i,k ) =
∑

i∈Ni

∑

k∈Nt

Jsumi,k
+ ((λDA+

k − λDA−

k )T (DMipi,k − fl))

+ νc
T

i,k(−xci,k+1 + Axnc
i,k + Bc

aggpi,k + Ed̂i,k + λ
+
wi,k

σi,k

+ λ
−
wi,k

σi,k) + νnc
T

i,k (xnci,k+1 − Axnc
i,k + Bnc

aggpi,k + Ed̂i,k

+ λ
+
wi,k

σi,k + λ
−
wi,k

σi,k) + µ+sumT

i,k (Asumpi,k − umax
i,k ) (24)

− µ
pT
i,k

i,k pi,k + µ−sumT

i,k (−Asumpi,k + umin
i,k )− µdiffT

i,k Adiffpi,k

The Lagrangian above shows that all aggregator’s equality
(νci,k, νnci,k ∈ R

nx,i) and inequality(µ+sum
i,k , µ−sum

i,k , µdiff
i,k ,

µ
pi,k

i,k ∈ R
np,i) LMs are local, except the ones connected to

constraint (14b) i.e.λDA
k . From the Lagrangian above, it must

also be noticed that the robustification constraints (23) are
only local to each aggregator’s underlying prediction model.
Therefore, by distributing and coordinating the calculation of
these global LMs, we can relieve the DSO from predicting un-
certainty disturbance sets. This distributed solution technique
is achieved through dual decomposition, decomposing the ro-
bust counterpart of the DSO problem (35) intoi independent
aggregator subproblems (36). The partial LMs of (14b) are
evaluated using a projected subgradient algorithm [42]. At
time stepk and aggregatori, consider the partial Lagrangian
of the DSO problem (14),

L(pi,k, λ
DA
k ) =

∑

k∈Nt

Jsumi,k
+ λDAT

k (DMipi,k − fl), (25)
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then the dual of the above Lagrangian is represented as:

g(λDA
k ) = inf

pi,k

L(pi,k, λ
DA
k ). (26)

Using (26) and (25), and excluding the constant
term (−λDAT

k fl), we get the evaluation of the dual,

g(λDA
k ) = inf

pi,k

∑

k∈Nt

Jsumi,k
+ λDAT

k (DMipi,k). (27)

Since the structure of problem is convex, the dual function is
concave and it can be solved using the sub-gradient method.
The subgradientSk of the negative of the dual∂(−g)(λDA

k ) ∈
R

nl becomes,

Sk =
∑

k∈Nt

(DMip∗
i,k)− fl, (28)

with p∗
i,k being the solution of the following problem,

min
p∗

i,k

∑

k∈Nt

λT
idlmpi,k

pi,k +
1

2
pT
i,kBpi,k (29)

subject to

(35c)− (35i) ∀k ∈ Nt.

Compared toλdlmpi,k
in (36), the λidlmpi,k

is computed
iteratively and independently by aggregators, using a dual sub-
gradient method, outlined below:

1) The DSO initializes the global LMs as:λDA
k ≥ 0,

and publishesλidlmpi,k
to each aggregator using the

procedure described in Section II-C.
2) Repeat

a) Each aggregatori independently solves (29) and
obtains the schedulep∗

i,k, which is submitted to
the DSO

b) Using (28), the DSO evaluates line limit violations
c) Based on line limit violations, the global LMs are

updated:λDA
k = (λDA

k + αkSk)+
3) The procedure is terminated when line loading tolerance

is attained or improvement in the dual objective stops.
For the choice ofαk ∈ R+, due to (26) being differentiable,
it can be chosen as a small positive constant step size to
guarantee the convergence [42]. More analysis on the pro-
jected sub-gradient method adopted in this paper is presented
in Section VI-C. For the final schedule obtainedp∗

i,k, the cost
for the aggregatorg(i)sum can be calculated as:

g(i)sum = g(i)sch + g(i)con

g(i)sch =
∑

k∈Nt

cT
kp∗

i,k +
1

2
p∗

T

i,kBp∗
i,k

g(i)con =
∑

k∈Nt

λ∗DAT

k (DMip∗
i,k) (30)

whereg(i)sch and g(i)con represent the cost for net energy
procurement and the congestion contribution by the aggrega-
tor i in the network. The distributed method proposed above
relieves the DSO from predicting any uncertainties in its
demand. Since the above mentioned method adopts worst-case
disturbance sets for obtaining robust DA DLMPs, it might
suffer from conservatism [18], [19]. This means that flexible
loads, compared to their true contribution, when operated
under these DLMPs might experience higher congestion cost.

B. Real-time Adjustment

The conservatism of robust solution and its relation to the
LMs of the coupling constraint (14b) can be analyzed using a
simple QP,

min
p∗

1

2
p2, s.t. p ≥ e. (31)

The above QP is only constrained through minimum energy
requiremente for the loadp. Intuitively, the above problem has
a trivial minimum, given byp∗ = e. This solution shows that
minimum effort to satisfy the load is at its minimum allowed
energy requirements. Analytically, this can be shown as,

L(p, λ) =
1

2
p2 + λ(e − p),

∂(L(p, λ))

∂p

∣

∣

∣

p=p∗,λ=λ∗

= 0, λ∗ = p∗,

∂(L(p, λ))

∂λ

∣

∣

∣

p=p∗,λ=λ∗

= 0, e = p∗. (32)

The above solution shows that the LM (of binding constraint)
is directly proportional to the strictness of the system. This
means a higher energy requirement increases the value of the
LM. In Section III-A1, we adopted worst-case bounds to miti-
gate uncertain disturbances of flexible demand. By comparing
aggregator’s deterministic (17) and robust counterparts (36),
it can be observed that additional positive terms are included
by the aggregator to account for worst-case disturbance sets.
This means that robust counterparts predict higher energy
requirements̄e, i.e. ē ≥ e. Similarly for the robust LMλ̄, this
translates tōλ ≥ λ. Consequently, the robust LM (λ̄) may over-
constrain flexible loads, when operating under any realized
disturbance other than the worst case. Hence, there must exist
a procedure to counteract conservatism of the already obtained
robust DA DLMPs.

Fig. 4. The information flow required for the RT adjustment (top). An example
of the RT market clearing by the DSO using aggregator1’s demand bids
(bottom left) and its translation to individual LPs’ demand bids (bottom right).
Note that the local and global information sharing is consistent with the DA
DLMPs (see Fig. 3).

The proposed RT adjustment method is implemented near
RT in a receding horizon fashion. This means that DLMPs,
adjusted at stepk, are used to update thermal states and
actuators for stepk+1. From Fig. 4, it can be seen that the
RT DLMP method maintains the data privacy of aggrega-
tors/loads. This is consistent with the distributed philosophy
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of our previously presented robust DA DLMP method. Fur-
thermore, by deploying a sensitivity analysis method, local
information/calculations are handled locally by aggregators
and no iterations are performed with the DSO. Indeed, due to
the unknown number of exact iterations to reach the optimal
solution (see Section III-A2), the iterative method is not suit-
able for implementation in a RT. The RT adjustment method
essentially operates in two steps: (1) each aggregator forms
demand bids using the sensitivity analysis of its respective
DA DLMPs and (2) the DSO then uses these demand bids to
adjust DA DLMPs (see Fig. 4).

1) DLMP Sensitivity Analysis:The DLMP sensitivity anal-
ysis (SA) provides information regarding the flexibility of
contracted loads of aggregators with respect to their ther-
mal satisfaction and available consumption capacity. The
SA procedure is triggered when a non-zero DA DLMP is
observed (λDA

k > 0). Indeed, if market conditions remain
the same, the RT load flexibility (actual disturbances) is
always upper bounded by the robust DA schedule (worst-case
disturbances). The SA procedure to obtain demand bids can
be outlined as:

At step k, each aggregator (forDMiλ
DA
k ) > 0 indepen-

dently:

1) Obtains a price sequenceΛ by perturbing theλDA
k from

0 to max(λDA
k ).

2) Finds the optimal consumption (p∗
i,k(x)) by solving (17)

for Λ(x). Repeat this step for allx samples inΛ, creating
price schedule pairs (p∗

i,k(x), Λ(x)).
3) Constructs the demand-bid by fitting a linear curve

through all pairs (p∗
i,k(x), Λ(x)).

For stepk, if each LP contracted under aggregatori has a
demand bid:λk(pLP,k) = mpLP,k + y0, then the aggregated
demand bid is represented as:

λk(pi,k) = Mp i,k + y0. (33)

In (33), M andy0 are the appropriately sized block diagonal
matrix and augmented vector, constructed using values of
slope m and intercepty0 from all respective LPs of the
aggregator.

2) Maximizing Social Surplus:After collecting demand
bids from aggregators, the following optimization problem is
solved by the DSO at stepk:

max
p∗

i,k

∑

i∈Ni

1

2
pT
i,kMp i,k + yT

0pi,k (34a)

subject to

pmin
i ≤ pi,k ≤ pmax

i (34b)

(λRT−

k ) − fl ≤
∑

i∈Ni

DMipi,k ≤ fl (λ
RT+

k ) ∀i ∈ Ni (34c)

Within allowable line limits, (34) maximizes the social surplus
of the overall system. The LMsλRT

k (λRT+
k − λRT−

k ) ∈ R
nl

are non-zero for the binding constraints (34c). For binding line
limits, (34) produces a new priceλ∗RT

k (≤ λ∗DA
k ), increasing

the social surplus of the overall system. It is assumed that
the maximumpmax

i and minimumpmin
i power in (34b) are

inclusive in aggregator demand bids.

Fig. 5. The modified RBTS distribution network from [43]. Darkand light
gray buildings are contracted under aggregator1 (LP6, 7, 16) and aggregator
2 (LP17, 24, 25, 38), respectively.
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0

2

4

6

8
·10−2

Time Periods

$/
kW

h

c0
z

Fig. 6. Energy and reserves prices (temporal resolution30 minutes) used for
conducting simulations.

IV. SIMULATION SETUP AND RESULTS

The distributed robust DLMP calculations are evaluated on
the Bus 4 Distribution Network of the Roy Billinton Test
System (RBTS) [43]. The assumed setup for this paper is
presented in Fig. 5. Consistent with the original data [43],7
commercial LPs are present in the network. Each LP (con-
tracted under an aggregator) is assumed to contain10 flexible
buildings. Each building is modeled considering10 floors
and 10 zones. Each LP is assumed to be operating under a
predefined box-constrained disturbance set (see Fig. 2). The
simulation parameters are given in Table II. The parameterδ
represents the prediction error. The error is calculated as the
observed maximum deviation from realized disturbances. For
proof of concept, it is assumed that only LP6 and 7 from
aggregator1 are constrained. The energy and reserve prices
used for scheduling flexible buildings are shown in Fig. 6.
The optimization problems are formulated in YALMIP [44]
and solved using CPLEX [45].

Table II
SIMULATION SETUP

δ Constrained LPs αk Line limits (kW) β ($/(kWh)2)

100% 6, 7 0.15 1, 350 1 · 10−4

In Fig. 7, comparison between the conventional DA DLMP
method and the proposed robust distributed method is pre-
sented. Both methods are simulated with similar robust con-
straints i.e. the worst-case disturbance set. The distributed
method is terminated when line violation tolerance of1×10−3

MW is reached. In Fig. 7, non-zero DLMPs represent con-
gestion hours. The main causes of congestion are: (1) higher

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2017.2660065

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9
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Fig. 7. The comparison between the total cost (top) and DLMPs (bottom) for
the proposed distributed and the conventional method. In the bottom plot, solid
lines represent conventional DLMPs and dashed lines distributed DLMPs.

space conditioning requirements and (2) reserve placement
incentives at time period10 and 12. Furthermore, it can be
observed that the magnitude of DLMPs continue to increase
from the time period9 onwards. This is due to the increase
in space conditioning requirements during day time.
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0
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kW
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0
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1,000

1,500

kW
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0
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1,500

2,000

kW
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Fig. 8. The robust DA (top), the RT-UA (middle) and the RT-A (bottom).
Time period24 represents exactly the midday.

The RT schedule uses the DA schedule as a reference set
point at each stepk. For RT operation, receding horizon
of 48 periods (1 day) is adopted [7]. In order to compare
the effectiveness of the RT adjustment, two RT operations are
considered. First, the RT adjusted (RT-A) schedule based on
the RT DLMPs using the method described in Section III-B is
found. Second, the RT unadjusted (RT-UA) schedule using DA
DLMPs is also considered. The comparison of both schedules
along with the DA schedule is presented in Fig. 8. It can
be seen that the RT-UA schedule is over-constrained, which
results in the underutilization of flexible loads. The RT-A
schedule removes this under utilization and allows the flexible
load to operate much closer to network line limits. Further-

more, during high price periods13 and 14, compared to the
RT-UA case, the RT-A schedules less load. This is because the
RT-A schedule utilizes higher flexibility in congested hours,
allowing flexible loads to avoid these higher price periods.

The RT-A procedure for the constrained aggregator1 at
time step10 is elaborated in Fig. 9. Using demand flexibility,
it can be observed that aggregator1 is able to push down the
congestion price (λRT

10 < λDA
10 ). This willingness to consume

more proves that flexible loads are over-constrained, when
operated under unadjusted DA DLMPs. The comparison of

40 50 60 70
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)
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Fig. 9. Real-time adjustment for the aggregator1 (top), and its LP’s
energy (bottom left) and reserve procurement (bottom right).

Table III
THE AGGREGATOR1’S EXPERIENCEDLM S

LM ($/MWh)
Time step (k)

8 9 10 11 12 13 14

λDA
k

0.2 2.2 5.6 8.9 14.4 22.1 33.5

λRT
k

0 1.2 5.1 7.6 12.5 22.1 0

DA LMs with the RT-A LMs for congested time steps is
presented in Table III. During congestion time stepsk′, it
can be seen thatλRT

k′ ≤ λDA
k′ . This lowering of RT-A LMs

improves the overall cost of consumption, as also depicted
in Fig. 10. The relative cost improvement (RCI8) of 30.2%
and 12.7% is observed for the case of RT-A schedule, com-
pared to those of the DA and the RT-UA, respectively. Note
that due to the availability of flexibility, loads can consume
more in congested hours. This increases the scheduling cost
for the RT-A case (g(1)sch) by 0.7%, compared to the RT-
UA case. However, this increase in the cost gets heavily out-
weighed by the improvement in the congestion cost (g(1)con),
which is 94.78% and69.3%, when compared to the DA and
the RT-UA scheduling, respectively.

8(
g(1)x

sum − g(1)RT-A
sum

g(1)RT-A
sum

)× 100, where x is the DA or RT-UA case.
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Fig. 10. Aggregator1’s total cost for the DA, RT-A and RT-UA case.
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Fig. 11. Number of iterations required to reach the global optimum by the
distributed algorithm (top right), the increase in the DA cost (top left), cost
savings (bottom left) and the % CI (bottom right) observed with the RT-A,
due to the increase in the prediction error.

A. Performance Evaluation

For the same simulation setup, to evaluate the performance
of the proposed method, multiple simulations with varying
prediction errorδ are performed. The results are presented
in Fig. 11. It can be observed (top right of Fig. 11) that the
number of required iterations for the solution to converge
is always less than150. As expected, the DA scheduling
cost (top left of Fig. 11), in order to account for the worst-
case disturbance realization, is observed to increase with an in-
crease in the prediction error. Compared to the DA and RT-UA
case, the RCI and savings from the RT-A are also presented
in Fig. 11. The RCI, compared to the DA case, increases as
the prediction error grows, advocating the importance of the
RT-A case. However, the RCI from the RT-UA case does not
show a large improvement. The first reason is because at higher
prediction errors (large DA DLMPs) the accuracy of demand
bids is compromised. Hence, these bids may misrepresent
the true response of buildings. The second reason is because
for both RT operations (the RT-UA and RT-A case) actual
disturbances experienced by buildings are considerably smaller
than the worst-case disturbances. Hence, by scheduling less
consumption, the RT-UA case already somehow compensates
the effect of large non zeros DA DLMPs. However, cost
saving from the RT-UA case is still observed for the higherδ.
To evaluate scalability of the proposed method, 100 runs
for various scaled versions of the distribution grid of Fig. 5
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Fig. 12. Comparison of the solution time between distributedand centralized
solution. The size (left) and number of aggregators (right) in the distribution
grid of Fig. 5 are increased. The base case is given in Table II. For the case
of the size of aggregators (left), compared to the base case, quadruple/octuple
means an increase in 4/8 times the size of LPs (in kW) contracted by
aggregators. For the case of the number of aggregators (right), compared to
the base case, quadruple/octuple refers to an increase in 4/8 times the number
of aggregators operating in the distribution grid.

are carried out on a 2.4-GHz processor with 64-GB RAM.
The mean time needed to compute each scaled scenario is
plotted on Fig. 12. Compared to the centralized solution, it
can be observed that even with an increase in the size of
the distribution grid, the distributed approach has a lower
computational time. However, with the increase in the size
of aggregators, the computation time also increases. Most
notably from Fig. 12, as the same sized number of aggregators
increases, the overall solution time drastically improves.9

V. CONCLUSION AND FUTURE WORK

This paper presents a distributed robust method to alleviate
congestion in the presence of flexible buildings in the distri-
bution grid. In particular, a two-step procedure is advocated to
increase the overall flexibility of the system. First, DA DLMPs
are obtained by incorporating robust load dynamics of build-
ings and information preservation of aggregators. Second, the
RT-A is performed to improve the conservatism of DA robust
DLMPs. Compared to previous studies on DLMPs, our pro-
posed method has an improved practical realizability as: (1) it
is implementable in a distributed manner, (2) it introduces RT-
A to harness the flexibility from loads near RT, and (3) it
compliments the combined DA and RT market frameworks,
already in place in many power systems. However, to perform
the integration of the proposed method into the current power
system, more investigations are to be performed. The most
notable ones consist of: (1) the interlinking market mechanism
between the transmission and distribution system operators, (2)
advanced distributed algorithms (such as ADMM) to include
non-linear power flows in the DSO problem while improving
the solution time and (3) the analysis of demand bids as a
function of the receding horizon length and DA DLMPs.

9For a fair comparison, an increase in number and size (LPs) of aggregators
from the base cases is also accompanied by a proportional increase in line
limits of the distribution grids.
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VI. A PPENDIX

A. DSO-Aggregator Robust Counterparts

The robust counterpart for the DSO problem is:

min
p∗

i,k

∑

i∈Ni

∑

k∈Nt

Jsumi,k
(35a)

subject to

− fl ≤
∑

i∈Ni

∑

k∈Nt

DMipi,k ≤ fl (λ
DA+

k , λDA−

k ) (35b)

xci,k+1 = Axnc
i,k + Bc

aggpi,k + Ed̂i,k + λ
+
wi,k

σi,k + λ
−
wi,k

σi,k

(35c)

xnci,k+1 = Axnc
i,k + Bnc

aggpi,k + Ed̂i,k + λ
+
wi,k

σi,k + λ
−
wi,k

σi,k

(35d)

xmin
i,k ≤ xci,k ≤ xmax

i,k (35e)

xmin
i,k ≤ xnci,k ≤ xmax

i,k (35f)

umin
i,k ≤ Asumpi,k ≤ umax

i,k (35g)

λ
+
wi,k

− λ
−
wi,k

= E (35h)

λ
+
wi,k

,λ−
wi,k

, pi,k,A
diffpi,k ≥ 0 ∀i ∈ Ni, ∀k ∈ Nt (35i)

The robust counterpart of aggregatori is:

min
p∗

i,k

∑

k∈Nt

λT
dlmpi,k

pi,k +
1

2
pT
i,kBpi,k (36)

subject to

(35c)− (35i) ∀k ∈ Nt

B. Proof for Unique Solution of Robust Counterparts

The Karush Kuhn Tucker (KKT) conditions for the robust
counterpart of the DSO problem are:

ck + Bpi,k +MT
i DT (λDA+

k − λDA−

k ) + BcT

aggν
c
i,k + BncT

agg ν
nc
i,k

+ AsumT

(µ+sum
i,k − µ−sum

i,k )− AdiffT

µdiff
i,k − µ

pi,k

i,k = 0 (37a)

λDA+

k · (DMipi,k − fl) = 0 (37b)

λDA−

k · (−DMipi,k − fl) = 0 (37c)

µ+sum
i,k · (Asumpi,k − umax

i,k ) = 0 (37d)

µ−sum
i,k .(−Asumpi,k + umin

i,k ) = 0 (37e)

µdiff
i,k · (−Adiffpi,k) = 0 (37f)

µ
pi,k

i,k · (−pi,k) = 0 (37g)

λDA+

k , λDA−

k ≥ 0 (37h)

µ−sum
i,k , µ+sum

i,k , µdiff
i,k , µ

pi,k

i,k ≥ 0 (37i)

(35b)− (35i) ∀i ∈ Ni, ∀k ∈ Nt (37j)

Similarly, the KKT conditions for the robustith aggregator is:

ck + Bpi,k +MT
i DT (λDA+

k − λDA−

k ) + BcT

aggν
c
i,k + BncT

agg ν
nc
i,k

+ AsumT

(µ+sum
i,k − µ−sum

i,k )− AdiffT

µdiff
i,k − µ

pi,k

i,k = 0 (38a)

µ−sum
i,k · (Asumpi,k − umax

i,k ) = 0 (38b)

µ−sum
i,k · (−Asumpi,k + umin

i,k ) = 0 (38c)

µdiff
i,k · (−Adiffpi,k) = 0 (38d)

µ
pi,k

i,k · (−pi,k) = 0 (38e)

(35c)− (35i), (37i) ∀k ∈ Nt (38f)

It can be observed that the robust DSO problem (35) has a
quadratic cost function and affine constraints. Furthermore,
the Hessian matrix of the quadratic cost is a positive definite
matrix. This makes the robust DSO problem a strictly convex
QP. Hence, its KKT conditions are necessary and sufficient,
and for a feasible problem the achieved solution is unique [41].
The robust aggregatori problem follows similar arguments. If
the solution of the KKT conditions (37) of the robust DSO
problem is given as:
(p∗

i,k, µ−sum∗

i,k , µ+sum∗

i,k , µdiff∗
i,k , µ

pi,k∗

i,k , νc∗i,k, νnc∗i,k , λDA+
∗

k ,

λDA−
∗

k ). Then by comparison, this solution also satisfies the
KKT conditions of the robustith aggregator (38). This is
because the robust aggregator constraints are also contained
within the KKT conditions of the DSO problem. Hence, any
solution which satisfies the robust DSO problem is also a valid
solution for the robust aggregator problem. But the solution of
the robust aggregator problem may not be a valid solution for
the robust DSO problem. This is because aggregatori does
not include line limits constraints of the robust DSO problem
[(37b), (37c)]. However, it can be observed that due to the
robust DSO and aggregator problems being strictly convex,
the obtained solution must be unique. Hence, this uniqueness
enforces that any solution of the robust aggregator problem
must also be the solution of the robust DSO problem. However,
it must be noted here that due to the deployment of the worst-
case disturbance bounds, this unique solution is optimal for the
worst-case and feasible for any other disturbance realization.

C. Coupling Constraint and Dual Decomposition

Consider a simplified version of the Lagrangian described
in (24), containing only two aggregators along with local
temperature and power limitations:

L = −λDAT

k fl + Jsum1,k
+ λDAT

k DM1p1,k

+νT1,k(−x1,k+1 + Ax1,k + Baggp1,k + Ed̂1,k

+λ
+
w1,k

σ1,k + λ
−
w1,k

σ1,k) + µT
1,k(A

sump1,k − umax
1,k )

+Jsum2,k
+ λDAT

k DM2p2,k

+νT2,k(−x2,k+1 + Ax2,k + Baggp2,k + Ed̂2,k

+λ
+
w2,k

σ2,k + λ
−
w2,k

σ2,k) + µT
2,k(A

sump2,k − umax
2,k )

The above Lagrangian demonstrates how the DSO’s coupling
constraint (14b) splits among aggregators. Essentially, for
aggregatori, matricesMi (node mapping) andD (PTDF)
translate power consumption of aggregators to the line flow in
distribution grid. In the end, individual contributions of each
aggregator is summed up (DMipi,k) to obtain the total line
flows in the distribution grid. Note that this is the only coupling
in the above Lagrangian. For a given coupling dualλDA

k , the
above presented Lagrangian can be equivalently written as
solving the following local robust aggregator problems [42]:

g1(λ
DA
k ) = min

p∗

1,k

Jsum1,k
+ λDAT

k DM1p1,k

s.t. Aggregator 1’s energy requirements (40)

g2(λ
DA
k ) = min

p∗

2,k

Jsum2,k
+ λDAT

k DM2p2,k

s.t. Aggregator 2’s energy requirements (41)
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and then iterating (it) between aggregators (42a) and the
DSO (42b), until the convergence is achieved.

p∗
it

1,k = g1(λDAit

k ), p∗
it

2,k = g2(λDAit

k ) (42a)

λDAit+1

k = (λDAit

k + αhit)+ (42b)

In (42), if g(λDAit

k ) = g1(λ
DAit

k ) + g2(λ
DAit

k ) then
h ∈ ∂(−g)(λDAit

k ) = DM1p∗
it

1,k + DM2p∗
it

2,k − fl, wherep∗
it

1,k

andp∗
it

2,k are solutions of (40) and (41) respectively.
The first observation from the above mentioned method is

that g(λDA
k ) is differentiable, hence only one element exists

in its subdifferential [46]. Differentiability also implies that a
constant small enough step sizeα will yield convergence [46].
For the case of our strictly convex problems (QP), this means
that we can recover a unique global solution of the whole
problem (see Section VI-B). The second observation is that
aggregators [(40), (41)] handle uncertainties locally. Since
uncertainty sets are predefined in each robust aggregator
problem, the iterative link between aggregators and the DSO,
through global LMλDA

k does not contain any uncertainty.
For two aggregators and two time steps(k = 1, 2), Fig. 13

and Fig. 14 show the progress of dual decomposition-based
subgradient method. For each iteration, aggregators incor-
porateλDAit

k to find their local robust solutionspit
1,k, p

it
2,k.

These local solutions, when infeasible for the overall DSO
problem, propagate through the projected subgradient method.
This method moves the local robust solutions in the direction
of its negative subgradient, until they converge to a unique
solution.
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,k
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∑

k(p1,k + p2,k)− fl
(
∑

k pit
1,k,

∑

k pit
2,k)

(
∑

k p∗
1,k,

∑

k p∗
2,k)

Fig. 13. Visualization of dual decomposition-based subgradient method on
a small QP example. This example represents combined energy requirements
for aggregators, 0 ≤

∑
k (p

1,k + p
2,k) ≤ 4 and the quadratic cost

function,
∑

k (p2

1,k
+ p2

2,k
). Trivially, the minimum of this problem is

zero energy requirements for both aggregator [∀k, p
1,k , p2,k = 0]. Hence,

coupling constraint,
∑

k(p
1,k + p

2,k) ≥ 4 is introduced.
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Fig. 14. Dual variable updates for the subgradient method of Fig. 13.

REFERENCES

[1] M. Maasoumy, “Controlling Energy-Efficient Buildings in the Context
of Smart Grid: A Cyber Physical System Approach,” Ph.D. dissertation,
University of California, Berkeley, 2013. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-244.html

[2] D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, “Contrasting
the capabilities of building energy performance simulation programs,”
Building and Environment, vol. 43, no. 4, pp. 661–673, apr 2008.

[3] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and M. Morari, “Use of model predictive control
and weather forecasts for energy efficient building climate control,”
Energy and Buildings, vol. 45, pp. 15–27, feb 2012.

[4] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves,
“Model Predictive Control for the Operation of Building Cooling Sys-
tems,”IEEE Transactions on Control Systems Technology, vol. 20, no. 3,
pp. 796–803, 2012.

[5] E. Vrettos, F. Oldewurtel, and G. Andersson, “Robust Energy-
Constrained Frequency Reserves From Aggregations of Commercial
Buildings,” IEEE Transactions on Power Systems, pp. 1–14, 2016.

[6] E. Vrettos and G. Andersson, “Scheduling and Provision of Secondary
Frequency Reserves by Aggregations of Commercial Buildings,”IEEE
Transactions on Sustainable Energy, vol. 7, no. 2, pp. 850–864, 2016.

[7] S. Hanif, D. Fernando, M. Maasoumy, T. Massier, T. Hamacher, and
T. Reindl, “Model predictive control scheme for investigating demand
side flexibility in Singapore,” in2015 50th International Universities
Power Engineering Conference (UPEC), 2015, pp. 1–6.

[8] S. Hanif, C. Gruentgens, T. Massier, T. Hamacher, and T. Reindl,
“Quantifying the effect on the load shifting potential of buildings due
to ancillary service provision,” in2016 IEEE Power and Energy Society
General Meeting (PESGM). IEEE, jul 2016, pp. 1–5.

[9] S. Hanif, D. F. R. Melo, M. Maasoumy, T. Massier, T. Hamacher, and
T. Reindl, “Robust reserve capacity provision and peak load reduction
from buildings in smart grids,” in2016 IEEE Power and Energy Society
General Meeting (PESGM), jul 2016, pp. 1–5.

[10] S. Hanif, T. Massier, H. B. Gooi, T. Hamacher, and T. Reindl, “Cost
Optimal Integration of Flexible Buildings in Congested Distribution
Grids,” IEEE Transactions on Power Systems, pp. 1–1, 2016.

[11] R. Verzijlbergh, L. J. De Vries, and Z. Lukszo, “Renewable Energy
Sources and Responsive Demand. Do We Need Congestion Management
in the Distribution Grid?”IEEE Transactions on Power Systems, vol. 29,
no. 5, pp. 2119–2128, 2014.

[12] P. Bach Andersen, J. Hu, and K. Heussen, “Coordination strategies for
distribution grid congestion management in a multi-actor, multi-objective
setting,” IEEE PES Innovative Smart Grid Technologies Conference
Europe, pp. 1–8, 2012.

[13] S. Huang, Q. Wu, Z. Liu, and A. H. Nielsen, “Review of Congestion
Management Methods for Distribution Networks with High Penetration
of Distributed Energy Resources,”5th IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe), 2014.

[14] N. O’Connell, Q. Wu, J. Østergaard, A. H. Nielsen, S. T. Cha, and
Y. Ding, “Day-ahead tariffs for the alleviation of distribution grid
congestion from electric vehicles,”Electric Power Systems Research,
vol. 92, pp. 106–114, nov 2012.

[15] R. Li, Q. Wu, and S. S. Oren, “Distribution Locational Marginal Pricing
for Optimal Electric Vehicle Charging Management,”IEEE Transactions
on Power Systems, vol. 29, no. 1, pp. 203–211, jan 2014.

[16] S. Huang, Q. Wu, S. S. Oren, R. Li, and Z. Liu, “Distribution Loca-
tional Marginal Pricing Through Quadratic Programming for Congestion
Management in Distribution Networks,”IEEE Transactions on Power
Systems, vol. 30, no. 4, pp. 2170–2178, jul 2015.

[17] S. Huang, Q. Wu, L. Cheng, Z. Liu, and H. Zhao, “Uncertainty
Management of Dynamic Tariff Method for Congestion Management
in Distribution Networks,” IEEE Transactions on Power Systems, pp.
1–8, 2016.

[18] M. Maasoumy and A. Sangiovanni-Vincentelli, “Optimal Control of
Building HVAC Systems in the Presence of Imperfect Predictions,” in
ASME 2012 5th Annual Dynamic Systems and Control Conference, 2012.

[19] J. M. Morales, A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno,
Integrating Renewables in Electricity Markets, ser. International Series
in Operations Research & Management Science. Boston, MA: Springer
US, 2014, vol. 205.

[20] S. E. Widergren, K. Subbarao, J. C. Fuller, D. P. Chassin, A. Somani,
M. C. Marinovici, and J. L. Hammerstrom, “AEP Ohio gridSMART
demonstration project real-time pricing demonstration analysis,” Pacific
Northwest National Laboratory, Tech. Rep. February, 2014.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2017.2660065

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-244.html


13

[21] D. J. Hammerstrom, R. Ambrosio, T. a. Carlon, J. G. Desteese, R. Kaj-
fasz, R. G. Pratt, and D. P. Chassin, “Pacific Northwest GridWise(TM)
Testbed Demonstration Projects Part I . Olympic Peninsula Project,”
Pacific Northwest National Laboratory, Tech. Rep., 2007.

[22] J. Baillieul, M. C. Caramanis, and M. D. Ilic, “Control Challenges in
Microgrids and the Role of Energy-Efficient Buildings,”Proceedings of
the IEEE, vol. 104, no. 4, pp. 692–696, apr 2016.

[23] J.-Y. Joo and M. D. Ilic, “An Information Exchange Framework Utilizing
Smart Buildings for Efficient Microgrid Operation,”Proceedings of the
IEEE, vol. 104, no. 4, pp. 858–864, apr 2016.

[24] T. Samad, E. Koch, and P. Stluka, “Automated Demand Response for
Smart Buildings and Microgrids: The State of the Practice and Research
Challenges,”Proceedings of the IEEE, vol. 104, no. 4, pp. 726–744,
2016.

[25] M. Caramanis, E. Ntakou, W. W. Hogan, A. Chakrabortty, and
J. Schoene, “Co-optimization of power and reserves in dynamic T&D
power markets with nondispatchable renewable generation and dis-
tributed energy resources,”Proceedings of the IEEE, vol. 104, no. 4,
pp. 807–836, 2016.

[26] E. Loukarakis, C. J. Dent, and J. W. Bialek, “Decentralized multi-period
economic dispatch for real-time flexible demand management,”IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 672–684, 2016.

[27] E. Loukarakis, J. W. Bialek, and C. J. Dent, “Investigation of Maximum
Possible OPF Problem Decomposition Degree for Decentralized Energy
Markets,”IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2566–
2578, 2015.

[28] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Message Passing for
Dynamic Network Energy Management,”Foundations and Trends in
Optimization, vol. 1, no. 2, pp. 70–122, 2014.

[29] J.-Y. Joo and M. D. Ilic, “Multi-Layered Optimization Of Demand
Resources Using Lagrange Dual Decomposition,”IEEE Transactions
on Smart Grid, vol. 4, no. 4, pp. 2081–2088, dec 2013.

[30] Y. Zhang and G. B. Giannakis, “Distributed Stochastic Market Clearing
With High-Penetration Wind Power,”IEEE Transactions on Power
Systems, vol. 31, no. 2, pp. 895–906, mar 2016.

[31] N. Gatsis and G. B. Giannakis, “Decomposition algorithms for market
clearing with large-scale demand response,”IEEE Transactions on Smart
Grid, vol. 4, no. 4, pp. 1976–1987, 2013.

[32] S. Boyd, N. Parikh, B. P. E Chu, and J. Eckstein, “Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method
of Multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[33] M. Maasoumy, A. Pinto, and A. Sangiovanni-Vincentelli, “Model-Based
Hierarchical Optimal Control Design for HVAC Systems,” inASME
2011 Dynamic Systems and Control Conference, 2011, pp. 271–278.

[34] D. Sturzenegger, V. Semeraro, D. Gyalistras, and R. S. Smith, “Building
Resistance-Capacitance Modeling (BRCM) ToolBox,” 2012. [Online].
Available: http://www.brcm.ethz.ch

[35] D. Sturzenegger, D. Gyalistras, M. Morari, and R. S. Smith, “Model
Predictive Climate Control of a Swiss Office Building: Implementation,
Results, and Cost-Benefit Analysis,”IEEE Transactions on Control
Systems Technology, vol. 24, no. 1, pp. 1–12, 2016.

[36] S. Chatzivasileiadis, M. Bonvini, J. Matanza, R. Yin, T. S. Nouidui, E. C.
Kara, R. Parmar, D. Lorenzetti, M. Wetter, and S. Kiliccote, “Cyber-
physical modeling of distributed resources for distribution system oper-
ations,” Proceedings of the IEEE, vol. 104, no. 4, pp. 789–806, 2016.

[37] S. Swan, “Interruptible load: new partnerships for better energy manage-
ment,” 2005 International Power Engineering Conference, pp. 888–892
Vol. 2, 2005.

[38] Energy Market Authority, “Implementing Demand Response In The
National Electricity Market of Singapore,” EMA, Singapore, Tech.
Rep., 2013. [Online]. Available: http://tinyurl.com/zw5lmsn

[39] ——, “Introduction to the National Electricity Market,” Energy Market
Authority, Singapore, Tech. Rep. October, 2010. [Online]. Available:
http://tinyurl.com/j36eagv

[40] “Energy Market Company Singapore.” [Online]. Available:
https://www.emcsg.com/

[41] L. Boyd, Stephen and Vandenberghe,Convex optimization theory. Cam-
bridge University Press, 2004.

[42] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on Decom-
position Methods,” Stanford University, Tech. Rep., 2008.

[43] R. Allan, R. Billinton, I. Sjarief, L. Goel, and K. So, “A reliability
test system for educational purposes-basic distribution system data and
results,” IEEE Transactions on Power Systems, vol. 6, no. 2, pp. 813–
820, may 1991.

[44] J. Loefberg, “YALMIP: A toolbox for Modeling and Optimization in
MATLAB,” in CACSD Conference, Taipei, 2004.

[45] IBM, “IBM ILOG CPLEX Optimization Studio.” [Online]. Available:
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

[46] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,”lecture
notes of EE392o, Stanford, vol. 1, no. May, pp. 1–21, 2003. [Online].
Available: goo.gl/S0KX0W

Sarmad Hanif (S’15) received B.Sc. in Electrical
Engineering from the University of Engineering and
Technology Lahore, Pakistan and M.Sc. in Power
Engineering from the Technical University of Mu-
nich (TUM), Germany in 2009 and 2013, respec-
tively. Since June 2014, he is pursuing Ph.D. at the
Technical University of Munich (TUM), Germany.
He is interested in the integration of cost effective
and reliable flexible demand into power systems.

H. B. Gooi (SM’95) received the B.S. degree in EE
from National Taiwan University in 1978; the M.S.
degree in EE from the University of New Brunswick
in 1980; and the Ph.D. degree in EE from Ohio State
University in 1983. From 1983 to 1985, he was an
Assistant Professor with Lafayette College, Easton.
From 1985 to 1991, he was a Senior Engineer with
Empros (now Siemens), Minneapolis, where he was
responsible for the design and testing coordination
of domestic and international energy management
system projects. In 1991, he joined the School of

Electrical and Electronic Engineering, Nanyang Technological University, Sin-
gapore, as a Senior Lecturer, where he has been an Associate Professor since
1999. He was the Deputy Head of Power Engineering Division during 2008-
2014. He has been an Editor of IEEE Transactions on Power Systems since
2016. His current research interests include microgrid energy management
systems dealing with storage, renewable energy sources, electricity market
and spinning reserve.

Tobias Massier (M’15) received the Dipl.-Ing. and
PhD degree in electrical engineering and information
technology from the Technical University of Munich
(TUM), Germany, in 2002 and 2010 respectively.
From 2009 to 2012, he managed a new Master
Program in Power Engineering at TUM. Since 2013,
he has been with TUM CREATE as Principal Inves-
tigator of the research group Electrification Suite and
Test Lab. His research interests are in transportation
electrification, vehicle emissions and integration of
renewable energies.

Thomas Hamacheris a full professor in renewable
and sustainable energy systems at the Technical
University Munich (TUM), Germany. His research
focuses on energy and systems analysis, focusing on
urban energy systems, the integration of renewable
energy into the power grid, and innovative nuclear
systems (including fusion). Other focuses of his
work are the methods and fundamentals of energy
models.

Thomas Reindl is the Deputy CEO of the Solar
Energy Research Institute of Singapore (SERIS) and
a Principal Research Fellow (equivalent to Associate
Professor) at the National University of Singapore
(NUS). Before joining SERIS, Dr. Reindl held sev-
eral management positions within the solar industry.
Dr. Reindl holds a Master in Chemistry, a Ph.D. in
Natural Sciences and an MBA from INSEAD, all
awarded with the highest honours. In addition to his
appointment as Deputy CEO of the institute, he is
also Director of the Solar Energy Systems cluster at

SERIS since 2010.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2017.2660065

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.brcm.ethz.ch
http://tinyurl.com/zw5lmsn
http://tinyurl.com/j36eagv
https://www.emcsg.com/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
goo.gl/S0KX0W

