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Abstract—Flexible demand side energy and reserve procure- alleviating solution techniques. Focusing on a particular type
ment has the potential to improve the overall operation of the of price-based control, the authors in [14]-[16] proposed the
grid. However, as argued in previous studies, this flexibility might - ¢4ncept of DA DLMP to alleviate congestion due to flexible
cause congestion in distribution grids. In this paper, we improve loads. The DLMP thod (1 ided the | ¢ il
the conventional distribution locational marginal price (DLMP) oaas. . e me _0 1) prov_l e € lowes pOS;_SI e
method, while integrating Congestion free energy and reserve theoretical cost to alleviate Congest|0n and (2) was realizable
provision from buildings in distribution grids. First, robust day- due to its similarity with the existing locational marginal
ahead (DA) DLMPs are calculated to account for unmodelled price (LMP) concept at the transmission level. However, while

dynamics of flexible loads. Second, using dual decomposition,Ca|cu|ating DA DLMPs, the authors in [14]-[16] did not
the data sharing requirements between the aggregator and the t tainties | ’ dicting flexible d d
distribution system operator (DSO) are minimized. Third, a account uncertainies in preadicting fiexible demand.

sensitivity-based real-time (RT) adjustment method is presented ~ Recently, [17] presented a new DLMP method to account
to remove conservatism of DA robust DLMPs. Case studies are for uncertain flexible demand. A sensitivity-based iterative

performed on a benchmark distribution system. The numerical solution was obtained after quantifying the prediction error’s
results show that the proposed technique efficiently handles ..,papility distribution. However, the proposed method of [17]
load uncertainties and data sharing requirements, improving the - . . . .
practicality of the conventional DMLP method. relied on the. DSO to prgdlct uncertain flexible d_emand. Th|s
o _ _ assumption in our opinion suffers from two major practical
Index Terms—Distributed Congestion Management, Real-time 5\ hacks. First, predicting large scale flexible demand may
Adjustment, Robust Optimization, Flexible Buildings, Distribu- . L.
tion Locational Marginal Pricing (DLMP). overburden the operation of the DSO. This is because the
DSO is primarily responsible for maintaining/operating the
grid and has little or no interest in commercial (maximizing
. INTRODUCTION profit) activities. Second, due to modeling complexities and/or
Due to their high contribution in greenhouse gas emissionsivacy concerns, load owners (users) may not be able to
it is important to operate buildings in a more energy efficieshare with the DSO, the necessary information required for
manner [1]. This motivation along with advancements ipredicting their demand. Apart from drawback related to
controllable building models [2]-[4] have spurred researchetiata sharing requirements, another important consideration
in developing energy efficient and grid-friendly building opof RT adjustment is also found missing in uncertain DLMP
eration strategies [3]-[6]. With similar goals, in our previougamework of [17]. This consideration is important because
work [7]-[10], we presented buildings as a reliable resourggethods to mitigate uncertainties cause models to deviate
for procuring flexible energy and reserve. We showed thfgbm their deterministic (optimal) behavior [5], [6], [18]. For
flexible operation of buildings can improve their operationaMPs, this deviation would influence the cost of energy
cost, while providing consumer satisfaction and grid sidgelivery to the customer. Since uncertain predictions are much
reserves. In this paper, we significantly extend our previousore accurate closer to their actual realization [19], there
works, incorporating methods to account for uncertain flexiblaust exist a method to perform RT or near RT adjustment of
demand when integrated in congested distribution grids. uncertain DLMPs. It is also shown from pilot projects [20],
The issue of congestion management due to the introductj@n] that when controlled near RT, flexible loads operate closer
of price responsive demand was highlighted in [11]-[13]. One their preferred behavior. Generally, the above mentioned
of the main causes for congestion was outlined as a reswivacy concerns and uncertainty handling techniques are also
of the weakening of the correlation between the wholesalgcognized as one of the major hurdles for realizing smart
electricity price and demand. The authors in [11], [12] pradistributed energy resources in the future grid [22]-[24].
vided both a holistic view and quantitative comparisons of Regarding the above mentioned missing data sharing con-
various congestion alleviating methods. The work in [13] wasraints of the DLMP framework, one can propose a distributed
more focused towards the comparison of common congestigslution technique. These techniques with respect to integrat-

ing flexible resources in the grid were reported in [25]-[31].
This work was financially supported by the Singapore National Resear J 9 P [ ] [ ]

Foundation under its Campus for Research Excellence And Technologiggfi'Cent studies in [25]-[28] proposed methods based on alter-
Enterprise (CREATE) programme. This work was also sponsored by Natiomg@iting direction method of multipliers (ADMM) [32]. Though
Research Foundation, Prime Ministers Office, Singapore under its Competitﬂt%se methods provided fast convergence, these works did not
Research Programme (CRP grant NRF2011NRF-CRP003-030, Power gri . . .

stability with an increasing share of intermittent renewables (such as so nsider the restriction of the network and the flexible demand
PV) in Singapore). information to the DSO and aggregators, respectively. These
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works assumed that network information (complex voltage aml MPs. In doing so, this paper significantly improves the
angle) is also available at the aggregator level to promotedéstributed DSO-aggregator cooperation framework of [10]
more decentralized solution. However, our focus is to achielsg enabling it to efficiently handle uncertain flexible demand
a distributed approach, which promotes coordination of thedictions locally.

involved entities while preserving their individual privacy. Section Il explains preliminaries for this paper. The pro-
In [30], [31] some privacy between aggregators and the DS®sed robust DA DLMPs with their RT adjustment is in Sec-
was considered. Nevertheless, in the proposed methods of [3i@n 1Il. Section IV presents simulation setup and some key

[31], the DSO solves an optimization problem. This coultesults. Section V provides conclusion and future works.

cause an increase in the overall computation requirements
of the DSO. Another focus of this paper is to consider

NOTATIONS

privacy of uncertain flexible demand in combination with thEOr each zone at time step(discretek):

RT adjustment. According to our knowledge, this has n
been addressed in any of the relevant existing literature on
distributed solution techniques [25]-[31]. P, Ap, ¢

To summarize, the current DLMP framework [14]-[17]
suffers from important practical aspects of (i) handling un-;
modeled dynamics of flexible loads, (i) minimizing data™
sharing requirements and (iii) the intra-day (RT) adjustments
of the already obtained DA DLMPs. Apart from the abovel;, A
mentioned methodological shortcomings, an implementation
consideration found missing in the current DLMP framewor@“m Cs
is the inclusion of robust operations of buildings.

From the above mentioned deficiencies of the DLMPbi, nf, oy
method, in this paper, we solve (i) and (ii) by formingN N
robust DLMPs and calculating them in a distributed manner.”*’ =™
The proposed approach relieves the DSO from predicting
the uncertain demand. Resultantly, uncertainties in flexik#geat,k» Pfan,k
demand are handled locally (privately) by aggregators. The
main reason for locally handling uncertainties is the fact thAk €R
usually aggregators are commercial and competitive entit@% .0 Gint,:
As a result, compared to the DSO, aggregators have a higher
motivation to account for un-modeled dynamics of their Ioads
Moreover, aggregators might also not feel comfortable, sharmg
their sensitive load data with the DSO. And consistent with
the original DLMP framework [14]-[17], we also keep thdm* <
network information (feeder and line loadings) only to thgg
DSO. Furthermore, in our proposed method the DSO is only
assigned to evaluate an inexpensive linear algebraic ter
which helps to minimize its overall computation requirements.
The deficiency number (iii) is erected using sensitivity-basegd , ¢ R
RT adjustment of the already obtained DA DLMPs. The
RT adjustment follows a receding horizon manner, utilizing/% 7
updated (actual) states of flexible loads and keeping trlle R™
overall local information handling framework consistent. By

TLL'd

we

’ILL,,, My,

]Rm,,

o Tri: Tsi

External and internal disturbances

Density of air, pressure difference across the
fan, and specific heat capacity of air

Transmittance of window and absorptivity
coefficient of wall, respectively

Total area of window and total area of the
wall wi, respectively

Thermal capacitance of wall and room
Number of buildings, floors and rooms

The set of all connected nodes to walls and
the room, respectively

Heating and fan power [kW]
Input schedule (i x ™m k] [kg/sec]

Solar radiation and internal heat generation
in the room, respectively

Equal to0 for internal andl for peripheral
walls.

HVAC'’s mass flow reserve schedule [kg/sec]
Thermal resistance between nadand j

Temperature of walls, rooms and HVAC’s
supply
HVAC'’s mass flow energy schedule [kg/sec]

number of walls and rooms

Thermal state vector [deg C]

addressing the above mentioned deficiencies, this paper Rot aggregatof at discrete time step:

only improves the current DLMP framework, but also presen
a novel analysis on handling distributed uncertain flexib
demand and its relationship with the RT adjustment. Wi € R
This paper also significantly extends our previous work

in [10]. The major improvements in terms of new formuP:x € R
lations and the proposed solution methodologies consist )pf R7e.i
(1) formulating robust counterparts of DLMPs to account for”
uncertainties in predicting flexible demand, (2) solving for, n;,, ni,
robust DLMPs using a privacy preserving distributed approach

and (3) proposing the RT adjustment solution to account fgf:¢* "d-i:
conservatism of the already obtained robust DA DLMPs. From

the major contributions perspective, using a two-step approach,

ik € R

External and internal disturbances
Disturbance uncertainty

Input schedule[(; x rs %))

Thermal states

Number of states, HVACs and disturbances

np Number of statesi(, ;-ny-n,-n), dis-

turbances, ;-n¢-n,-n;,) and inputs
(np,imgneng, ni,)

this paper bridges the gap between deterministic and uncertaor modeling market:
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I} Price sensitivity coefficient [$/(KWH] This property can be easily exploited to rapidly translate this

Baseli ) Wh model to the form used by state-of-the-art building modeling
€0,k aseline price [$ ] tools [34]-[36]. In [10], we showed an example to achieve this
2k Reserve price [$/kWh] translation for the above described building model.

Il. PRELIMINARIES B. Aggregator Model

A. Zone Model

) o ) ) ) The aggregator is responsible for procuring flexibility for
To predict building dynamics, a resistance-capacitance (f& contracted buildings. The aggregataaugments the zonal

C) based zone modeling is deployed [1]. The zone modelfdel of (3) to predict thermal states as:
are then aggregated to obtain the thermal model of the whole

building. A variable frequency drive fan based HVAC system Xik = AZi0 + BaggP; p + Eélm€ (5)

is considered as a source of flexibility in the modeled zone of i i o .
each building. In principle, by modulating the fan speed, tHg this paper, a I_|beraI|zed market setting is ass_u_med which
energy consumption as well as the temperature of the roonf{Ws loads to bid for reserves and energy provision through
controlled. An R-C (lumped) model of a zone contains therm§]€ interruptible load (IL) [37] and the demand response [38]
resistances and capacitances, representing heat transfer PARgram. respectively. Practical examples of these programs

heat storage, respectively. The differential equations governf@? Pe found in the National Electricity Market of Singa-
temperature evolutions of walls and room become: pore [39]. In the IL program, aggregators need to reserve some
of its load. If required, this load is curtailed by the system

dT,; 1 T — Twi A 1 operator. Hence, to account for system operator’s decision to
.~ Cyy Z 732_], + 7i0wiAwidraa,, | » (18)  curtail or not, the aggregator must predict both curtailed and
TENwi not-curtailed temperature trajectories,
Tri 1 T, — Ty . ne -
T | X B i (T - T2 X1 = AXPS + Bl s+ Edi, (63)
e JeN,; & qu,k-‘,-l = AX?% + nggpi,k + Ed@k. (Gb)
i -
+ Wit Arilrad,, + dint | - (1b) MatricesB”< andB¢_, in (6a) and (6b) differentiate between

agg agg K A X
Details regarding units and parameters of the R-C model wih not-curtailed and curtailed consumptions, respectively. The
the method to translate them from physical quantities to staft@t-curtailed trajectory (6a) is similar to (5), as the original
space models is given in [1]. The nonlinear relationship @Fediction model (5) already contains both the usual energy
temperature of the zong with the HVAC mass flow rate.,, ; and reserve consumption variables. The curtailed trajectory

can be generalized as: is predicted by placing zeros at position_s Bf.., which
_ . corresponds to the reserve vectos 4). This ensures that
&y = Awe + g(@, um,e) + de. (2)  the curtailed trajectory has a maximum deviation from the

The expression in (2) is of nonlinear nature. Since tHot-curtailed one i.e_. full gurtailment_ of thg offered load at
most efficient controllers are obtained for linear systems, tAEP# (fi = 0). This maximum deviation is then captured
nonlinear model described above is linearized and discretiZ8dthe model by using only the not-curtailed trajectory at
using sequential quadratic programing and zero order hoRi€P & to predict both the not-curtailed (6a) and curtailed
respectively [33]. In [33], it is shown that linearizing aroundrajectories (6b) for steg + 1. This couples both the not-
the usual operating point does not introduce significant errof§/rtailed and curtailed trajectories in the aggregator model,
This is mainly because the temperature range of the buildii§Ccessitating co-optimization of both reserves and energy.
is normally not very large. The resultant discrete time linear 1) Co-optimizing Energy and Reserve Schedule:this

system at step is: paper, it is assumed_ tha_lt the aggregator similar to its users
R shares the same objectives of minimizing the total cost of
Tpt1 = Az + Byum p + Edg + Byrm g, energy procurement. The total cosdt,n,, for procuring
Tit1 = Az + Bagepr + Edy. (3) energy and reserves by aggregaitds then:
In (3), pr = [um,k ™m,x]) IS USed to compactly represent Toum, . = Ju + J, — R, (7)
S ik my g my m; g

usual energy and reserve consumption variables. Matrces
B.ge and E are of the appropriate sizes. Correspondingly, thehere J,,,, /., and R, are the cost of energy/reserves
electrical power consumed for heatipge.:, and fanpg., . is  consumption and the revenue due to the allocation of reserves.

given as: Since the global convergence for DLMPs [16] only holds
true for QPs, we are also going to consider quadratic cost
Pheat,t(tm¢) = tm tCp(Tei = Tri), (43)  formulation. This is achieved by assuming correlation of
Pran.t(Um.¢) = “LAP_ (4b) demandd;, with the spot pricey,, through a price sensitivity
' ' p coefficient3 [11],
The building model described above is simple, yet it pro-
vides physical interpretation of all of its underlying variables. Yr = cok + By (8)
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The procedure for obtaining values @fandc ; is explained 2) The aggregators after receiving DLMPs incorporate
in [11]. Using (8), the cost of consuming energy and placing  them into their energy planning.
reserves for a constant time intenat becomes: 3) Finally, the aggregators submit their optimized energy
plan to the spot market.

Jumi e ykp(um,k>At . . L. .
' ) For the optimal congestion alleviation using DLMPs, the above
= co,kp(tm k) At + B(p(um k) AL) mentioned method is carried out by formulating the DSO and
Trmg = C0kP(Tm k) AL + B(p(rm,k)At)? (9) aggregator problems as QPs [16], [17]. This formulation is

ith B only possible with the assumption of DC power flowing across
\IN' g(u“;k/r“rwl;p;‘ﬁatvk(u‘m’“/r‘]{“’“) +ffa‘?vk(u“lvk/rmvk>' he network. This means that voltage profiles of the network
n order fo calculate the revenue Irom placing reserves Undit, ;s med to be flat (1 per unit) and losses are ignored. Since
the IL program, we consider the market setting of ILs 9eUNGe focus of this paper is towards the improvement of data

paid based on their avaHabHFt;ar!d presence in the respeqtlvesharing requirements and the uncertainty handling capabilities
reserve grougs Due to thermal inertia, buildings can rapidly f the current DLMP framework [16], [17], we also proceed
vary their power consumption without much loss in Comfo(?vith the DC power flow ' '

constraints. Hence, we propose to use maximum reserv . .
. . prop eI'he DSO problem for the scope of this paper is then
pricesz, as cleared in the market, to schedule and calculate }
) represented as:
revenue from reservéss:

R”’mi’;‘,. - ka(rmk)At (10) rrlln Z Z ‘JS’LL’HL,L',k (143.)

. . ) " 1EN; kEN,
For constant time intervaht and conversion factors (see Sec- subject to

ggzellé)c,osrl;lgztzltutmg (9) — (10) in (7), the total cost for one _h< Z Z DMip, , < f ()‘kDA77)‘kDA+) (14b)
1 i€N; keN¢

Toumi, = Pk + 5Pi B (11) X5,y = AXPS +BS,,P, . + Edig (14c)

with, Xi'e1 = AX]E + BigPi g + Edig (14d)

S RN IR R R R a0

cok— 2k’ 03]’ Xig < Xip S XR” (14f)

Similarly, for aggregatori, the total cost at time step Ut < AT, < upe (149)

becomes: P e AP, L >0 Vi€ N;,Vk € N;  (14h)
Jsum,, = CiPi s + %pz‘T,kBpi,k- (13) In the above DSO problemy; and N, are the total number

of aggregators and time duration respectively. The output of

Mp,i Np,i XNp i
Here, ¢ € It andB ¢ & are the augmented (14) is the optimal input sequengs, for all aggregators.

and block diagonal versions of, and B, respectively. For ote that in this context, optimality is in terms of minimizing

both curtailed (6a) and not-curtailed (6b) trajectories, (1 e total cost of the system while satisfying network and

represents the overall cost for purchasing energy and pl.%%er constraints. Using (14g) and (14h), the actuator limits
ing reserves by the aggregator. Note that when calculatin . i

. . of all HVAC systems are constrained. Matricés"™ and
cost (13), variableg(um ) andp(rm,x) and their augmented

diff Np Nbr My XNp i i _
vectorp, , are internally converted to have units of K\W. AT (e R ") contain vectors 1 1] and [L -1]
4 at appropriate entries to compactly represent addition and

subtraction ofu,, ; andr, ; variables of each zone. Both
C. DLMP Method curtailed (14c) and not-curtailed (14d) temperature trajecto-
The authors in [14]-[16] proposed the DA dynamic tariffies are kept feasible through (14e) and (14f), respectively.
based DLMP method to alleviate congestion in distributiotf distribution grid containsnpp load points (LPs) andhy
grids. This procedure is summarized as follows: distribution lines, therD € R™*"LP represents power transfer

1) With the knowledge of network data, the DSO predicidistribution factor (PTDF). Matrix\/; € R™*#""» converts
load and market data to calculate DLMPs, which adhele combined energy and reserve vectors of the aggregators
to its grid limitations. contained irp; j to the total power at corresponding LPs of the

grid %. The Lagrange multipliers (LMs)PA(APA" — \PA™)
!Modeling activation of reserves based on the spot market operation is @utR™) represent sensitivity of binding line limit§ € R™

of the scope of this paper. . , _ in (14b). For timek and aggregatar, if the partial Lagrangian
The reserve groups represent their member’s response time and ou%)fj ith v bindi li limits is:
quality [40]. 14) with only binding line limits is:

SFrom market perspective this means that the reserve provision from -
buildings is placed in the highest quality reserve group of the market clearing L(pi k> )\kDA) = Jsum, , + )\kDA (DMipi k= ). (15)
engine. This assumption is not far from reality. As in [39], it has also been ’ ’ ’
mentioned that loads, compared to generators, possess a natural advantage
when providing reserves. 5This is done by summing up both usual energy and reserve vectors of
4This is done to keep the notation light and easy to follow. In principlehe corresponding aggregators and converting their units from kg/s to kW
the conversion from mass flows in kg/s to kW can be simply done using (4ising (4).
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Then DLMPs Q\dlmpi‘k) with units $/kWh are defined as: IIl. DISTRIBUTED ROBUST CONGESTIONALLEVIATION

As motivated earlier, the DSO should be relieved of the duty
Adlmp, , = aa_L =c+Bp;, + AkDATDMi, (16) to estimate. energy consumption of its underlying u_ncertain
Pi,k loads. In this section, we propose a method to alleviate con-
g_estion due to consumption from uncertain flexible buildings
In a distributed manner. The proposed method achieves this in
?vr\]/ steps: (1) calculating robust DA DLMPs and (2) applying

From (16), it can be seen that DLMPs consists of two comp
nents: (1) the (predicted) market data and (2) the distributi
line conditions. Consequently, it can be stated that the curr adjustment
DLMP framework only attempts to reflect congestion in the '

ener lanning (cost optimization) of aggregators. It must beBoth steps, calculating DA DLMPs and their RT adjustment,
gy p 9 P ggreg ) . are carried out in a distributed manner. The term distributed

noted that to form a distribution grid market mechanism us"}.gere refers to handling local information privately. This means

thesg DLMPs, a more r|gorous.analy3|s of these DLMPSt f"‘t sensitive information (load/network data) is only pro-
required. In [10], [17],_some possible regulatory and settleme(pessed by the corresponding local entity (aggregators/DSO)
arrangements regarding the collected revenue from DLMPs ?reobtain local solutiorfs These local solutions are then

dlscu§sed. Slnce,_the focus of this paper is towards uncerta!(r‘?to%rdinated between the DSO and aggregators to obtain the
handling, the design of a market layer on top of DLMPs I8 . L
inal solution. It must be noted here that the coordination

not considered. procedure to arrive at the final procedure is however different
Aggregatori after receiving DLMPs from the DSO, obtamsror both steps. For DA DLMPs, we propose an iterative

its final energy plan as: procedure (Section IlI-A2), and for the RT adjustment we

) - 1 ; design a clearing method (Section I1I-B2) for sensitivity-based
min Y Afmp,  Pi + 2 PiLkBPi (17) locally calculated demand bids (Section 11-B1).

"M kEN: Compared to the conventional DLMP methods, Table |
subject to presents the improvement in the data requirements from the
(14c)— (14h) Vk € N proposed method. Note that in the proposed method of this

paper the DSO never estimates any load and/or market data.
Under deterministic settings and strictly convex (QP) formwiso, the proposed method does not require any additional data
lations, both aggregators (17) and the DSO (14) solutiopsquirements as compared to the conventional DLMP method.
converge to a unique solution [16]. The Flow chart depicting the overall working of the proposed
method is presented in Fig. 1.

Table |
COMPARISON OFDATA REQUIREMENTSBETWEEN CONVENTIONAL (A) A. Robust Day-ahead DLMPs
AND PROPOSEDMETHOD (B) . . . L
The pictorial representation of the proposed method is given

Enit Load Data  Market Data ~ Network Data  in Fig. 3. Note that in this method for computing DLMPs,
A B | A B | A B only prices are iterated between aggregators and the DSO.
DSO v 0 v 0O v v Hencc:, th((eI Ioga(; Tf()eratlLontof theIDtSIO (grldtdalia)tﬁnd ag-
gregators (load data) are kept completely private. Furthermore,
Aggregator v _ v v U O aggregators are only operating within bounded load dynamics,
Load Data: parameters for flexible loads models, Market Detargy, reserve and sensitivity price tO aCCOUnt for disturbance Uncertainties.

Network Data: Distribution grid lines, limitations and inflexible (base) loads

T
4| |===+Bounds
—— Measured Disturbancg

Disturbance [deg C/ hr]

Update Flexible
t Load States and
Disturbances

0 10 20 30 40 50
Time Period

Perform Real-time
Adjustment
(Section —111-B)
No

Unadjusted Fig. 2. Measured disturbances of the zonal model [18].

DLMPs
P Adjusted|

Update Flexible DLMPS 1) Uncertainties in Disturbance:The zonal model de-
scribed in (3) experiences both external and internal distur-

Fig. 1. Flow chart of the proposed method. See Fig. 3 and Figr 4nore b_ances' As Se_en from (1), there e)_('StS two disturbance sourc_:es:

information regarding DA DLMP and RT adjustment procedures respectivei) external disturbances, experienced due to solar radia-

This flow chart shows the generic organization of the whole procedure. Ngjgn q” and (”) internal disturbances, caused by electronic
that the exact timing for running the proposed methods will depend on radr;

predefined market rules.

6This local data handling for both methods can be clearly observed in Fig. 3
and Fig. 4 for DA DLMPs and RT adjustment methods respectively.
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components and occupangy,;. Even though it is extremely Distribution
hard to predict the actual probability distribution to estimate Locational Marginal
. . . DSO Prices Aggregator
these disturbances, their worst-case bounds can readily be — >
obtained by observing historical data [18] (See Fig. 2wif Prices Flexible Load
is a stochastic disturbance entering the zonal model additively, NetworkData [arereesereeseent|  oonce)
Schedules
~ Market Data
Thy1 = Ak + Baggpr + E(dy + wy), (18) Alleviate Minimize Cost
C ti vy
then we assumeu, € W to be bounded. The polyhedral engestion Energy &
Reserve Schedule

setW = {wy : ||lwk|l,, < ok} represents a box-constrained

disturbance uncertainties set. The bounded values represented =~ =  Final Settled Values ~ Local Information [

by o can be considered ds, norm bound of the observed —==» [lterations Local Operation [ ]
uncertainty. The two main adva”t?‘ges Of_ repre;entlng d'StHrg. 3. The coordination between the DSO and the aggregatarafoulating
bance as a polyhedral 98t are: (1) it is easily realizable from distributed DA DLMPs. The DSO only passes LMs (prices) connected
historical data [18], and (2) it helps in preserving the structui@ (14b).

of the optimization problem. Similar to (18), aggregators can

use the augmented version of () as: aggregators for calculating its robust DLMPs. In the next sub-

XS g1 = AXPG 4+ BS P, + E(dis + wix) (19) section, we reli_eve thg DSQ from predicting any di;turbance
ne ne ne - sets by proposing an iterative-based solution technique.
Xihi1 = AX{% + BagaP p + E(dik + Wik) (20)

2) lterative-based Distributed DLMPsthe price iterations
Uncertainties RobustificationThe polyhedral disturbanceshown in Fig. 3 are achieved by decomposing the origi-
set of Section I1-Al is included in the optimization frameworipal problem into the respective independent subproblems. In
of aggregators by forming the robust counterparts of [(19)eneral, this decomposition is obtained by exploiting partial
(20)]. This can be achieved by forming the dual of thegduality (dual of partial constraints) of the original problem.
constraints. Consider the uncertain curtailed states updafée partial LMs then serve as coordination variables between
equation of (19 the master (DSO) and local subproblems (aggregators). Also
‘ R in this paper, the coupling constraint between the local sub-
MaxX X; k1 = AXi) + BaggPik + E(dix + Wix)- (21) problems and the DSO problem is given by (14b). Consider

e _ the Lagrangian of the robustifed DSO problem (36) with
The uncertain part of (21) can be separated as: constraints only related to the input vecty,:
1 + - > nc sum —sum i ik
rvU?;X EW171§ (223) L(pi,lw )‘kDA ) )‘kDA ) Vic,ka Vi,Lka /J/;tk 7Mi,k ) /J/;l,lffa IU/?J: ) =
St wik <ok (Azlk) (22b) Z Z Jsumi,g- + (()‘ICDA+ - )‘kDAi )T(DMipi,k - )

Vi € N;,Vk € N;, (22c) i€NikeN,

—wir <ok (Ay ” A
U (XS iy + AXTE + BiggPip + Edik + AL, ok

wi’k)

and replaced by its associated dual, - R
+ Au Tik) T i (X — AXE + BlgP . + Edik

min )\j{, o)+ Aw. Ok (23a) .
A$7,,k7k”:/7,yk ik k + )\;;Lko'zk + )‘;i,kai,k) + ‘uz-zum (AbUIIlpi7k . UTEQK) (24)
1. X =E 2 T T ) ) )
! N A . (230) N?fick Pik + i (AP +UR") — M?,llffTAdlﬁpi,k
AL AL, . >0 Vie N, Vke N, (23c)

The Lagrangian above shows that all aggregator's equality
By duality, any feasible X} , A, ,) in (23) will be the (vf,, vi € R™ i) and inequality (u; 2", i x"™, uif,
upper bound for the maximization of (22). Hence, we capf.* ¢ R"».i) LMs are local, except the ones connected to
drop the minimization term in (23) and due to strong dualitygnstraint (14b) i.eAP4. From the Lagrangian above, it must
in linear programming [41] the achieved solution for bothiso pe noticed that the robustification constraints (23) are
primal and dual will be the same. The robust counterpart ghy |ocal to each aggregator’s underlying prediction model.
the original aggregator problem can then be completed Byerefore, by distributing and coordinating the calculation of
including [(23a) — (23c)] in (17). The final robust counterparigese global LMs, we can relieve the DSO from predicting un-
for aggregators and the DSO problem are shown in SgGrtainty disturbance sets. This distributed solution technique
tion VI-A. Section VI-B presents the global convergence prog§ achieved through dual decomposition, decomposing the ro-
for the robust DSO and aggregators problems. bust counterpart of the DSO problem (35) intondependent
The global optimality proof in Section VI-B shows that theyggregator subproblems (36). The partial LMs of (14b) are
robust solution, accounting for the worst-case disturbancegg|yated using a projected subgradient algorithm [42]. At

is unique for both the DSO and aggregators. Essentially, thigye stepk and aggregatoi, consider the partial Lagrangian
means that the DSO must deploy identical polyhedral sets §sthe DSO problem (14),

"The robust counterpart of the not-curtailed constraint (20) follows exactlyZ(p; ., )\kDA) = Z Jsum, . + )\kDAT (DM;p; . — fi), (25)
the similar procedure. 7 kEN: 7 7
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then the dual of the above Lagrangian is represented as: B. Real-time Adjustment

gAPA) = infL(p; ,, \P4). (26)  The conservatism of robust solution and its relation to the
Pi,x ’

LMs of the coupling constraint (14b) can be analyzed using a
Using (26) and (25), and excluding the constardimple QP,

term (—AkDATfl), we get the evaluation of the dual,

1,
: T min =p“, st .p>e.
gORM) =t D Joum, + AP (DMip). (27) 2P p=c
“F keN,

(31)

The above QP is only constrained through minimum energy

Since the stru_cture of problem is_convex, the dual_ function {&quirement for the loadp. Intuitively, the above problem has
concave and it can be solved using the sub-gradient methgdyjia| minimum, given byp* = e. This solution shows that

: . A
Tge subgradient;; of the negative of the dudl(—g)(\y*) €  minimum effort to satisfy the load is at its minimum allowed
R™ becomes, energy requirements. Analytically, this can be shown as,

Sk = Z (DM;p; ) — f1, (28) 1
KeN, L(p,A) = 5p° + Me —p),
with p; . being the solution of the following problem, A(L(p, \)) 0 v .
- . = ) = p )
. 1 ap pzp*7)\=)\*
min Z )\iﬂlmpmpi,k + EkaBpi,k (29) a(L(p, )
p7’vk kEN, T)j = 0, e = p* (32)
subject to P=PTA=A
(35¢) — (35i) Vk € N,. The above solution shows that the LM (of binding constraint)

_ ) is directly proportional to the strictness of the system. This
Compared t©0Adimp, , N (36), the Aidimp, , IS computed means a higher energy requirement increases the value of the
iteratively and independently by aggregators, using a dual sylyy | Section I111-A1, we adopted worst-case bounds to miti-
gradient method, outlined below: gate uncertain disturbances of flexible demand. By comparing
1) The DSO initializes the global LMs ast4 > 0, aggregator's deterministic (17) and robust counterparts (36),
and publishes\iaimp, , to each aggregator using thet can be observed that additional positive terms are included
procedure described in Section II-C. by the aggregator to account for worst-case disturbance sets.
2) Repeat This means that robust counterparts predict higher energy
a) Each aggregatar independently solves (29) andrequirements, i.e.é > e. Similarly for the robust LM\, this
obtains the schedulp;,, which is submitted to translates to. > A. Consequently, the robust LM may over-
the DSO constrain flexible loads, when operating under any realized
b) Using (28), the DSO evaluates line limit violationsiisturbance other than the worst case. Hence, there must exist
c) Based on line limit violations, the global LMs area procedure to counteract conservatism of the already obtained

updated A4 = (AP4 + axSk) + robust DA DLMPs.
3) The procedure is terminated when line loading tolerance

is attained or improvement in the dual objective stops. DSO Real-time Aggregator
For the choice ofy, € R, due to (26) being differentiable, ___DLMPs o F'e(’:g'ti:;ad
it can be chosen as a small positive constant step size to Nehyeils DEik &
guarantee the convergence [42]. More analysis on the pro- | Market Data___|
X . . . . N € X DLMP Sensitivity
jected sub-gradient method adopted in this paper is presented | Maximum Surplus | Demand Bids Analysis

Example: Real-time Market Clearing

in Section VI-C. For the final schedule obtaingd,, the cost
for the aggregatoy(i)s..», can be calculated as: s ooa S
K ~

g@)sum = g@)sch + g(i)con AiRT \

9(@)sen = Z cip;s + 5Pk BPi :

A DA “RT +RT
L

kEN Paad ngg Paggip Paggir. Pageie: Pagkir
t
; DAT
Q(Z)con = E AZ (DMipf7k) (30) Fig. 4. The information flow required for the RT adjustmenpftoAn example
kEN; of the RT market clearing by the DSO using aggregatsr demand bids

. . (bottom left) and its translation to individual LPs’ demand bids (bottom right).
where g(i)scn and g(i)con represent the cost for net energ\ote that the local and global information sharing is consistent with the DA
procurement and the congestion contribution by the aggre@aMPps (see Fig. 3).

tor 4 in the network. The distributed method proposed above

relieves the DSO from predicting any uncertainties in its The proposed RT adjustment method is implemented near
demand. Since the above mentioned method adopts worst-d@%ein a receding horizon fashion. This means that DLMPs,
disturbance sets for obtaining robust DA DLMPs, it mighadjusted at stepk, are used to update thermal states and
suffer from conservatism [18], [19]. This means that flexiblactuators for steg+1. From Fig. 4, it can be seen that the
loads, compared to their true contribution, when operat& DLMP method maintains the data privacy of aggrega-
under these DLMPs might experience higher congestion castrs/loads. This is consistent with the distributed philosophy
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of our previously presented robust DA DLMP method. Fur-
thermore, by deploying a sensitivity analysis method, local
information/calculations are handled locally by aggregators
and no iterations are performed with the DSO. Indeed, due to
the unknown number of exact iterations to reach the optimal
solution (see Section 111-A2), the iterative method is not suit-
able for implementation in a RT. The RT adjustment method
essentially operates in two steps: (1) each aggregator forms -
demand bids using the sensitivity analysis of its respective s
DA DLMPs and (2) the DSO then uses these demand bids to

adjust DA DLMPs (see Fig. 4).

o s
1) DLMP Sensitivity AnalysisThe DLMP sensitivity anal-

is (SA id inf fi di the flexibilit fFig. 5. The modified RBTS distribution network from [43]. Daakd light
ysis (SA) provides information regarding the flexibility ofy.5y buildings are contracted under aggregatécP6, 7, 16) and aggregator

contracted loads of aggregators with respect to their therepi7, 24, 25, 38), respectively.

mal satisfaction and available consumption capacity. The

SA procedure is triggered when a non-zero DA DLMP is g 1072

observed I\kDA > 0). Indeed, if market conditions remain

the same, the RT load flexibility (actual disturbances) is

always upper bounded by the robust DA schedule (worst-case

disturbances). The SA procedure to obtain demand bids can HE

be outlined as: % 10 20 30 40
At step k, each aggregator (fobM;\P4) > 0 indepen- Time Periods

demly: Fig. 6. Energy and reserves prices (temporal resoliidminutes) used for
1) Obtains a price sequendeby perturbing the\P4 from  conducting simulations.
0 to maxQP4).
2) Finds the optimal consumptiop (. (z)) by solving (17)
for A(z). Repeat this step for all samples im\, creating

LP13

{LP14

Lop-|LP15

LP20
{LP19

IV. SIMULATION SETUP AND RESULTS

price schedule pairgf , (z), A(z)). . The distributed robust DLMP calculations are evaluated on
3) Constructs the demand-bid by fitting a linear curvghe Bus 4 Distribution Network of the Roy Billinton Test
through all pairs ; ;. (=), A(x)). System (RBTS) [43]. The assumed setup for this paper is

For stepk, if each LP contracted under aggregatonas a presented in Fig. 5. Consistent with the original data [43],
demand bid\,(prpk) = mpLpi + yo, then the aggregatedcommercial LPs are present in the network. Each LP (con-

demand bid is represented as: tracted under an aggregator) is assumed to contaifexible
buildings. Each building is modeled considering floors
Ak(Pir) =Mp, ;. + Yo (33) and 10 zones. Each LP is assumed to be operating under a

In (33), M andy, are the appropriately sized block diagonazireﬂ?;'t?:r? ba?);ﬁzrt]esrt;a;zd S/I:;ulrr? a}l'gcb?esﬁt 'f’ieee er%n@Z).teIhe
matrix and augmented vector, constructed using values 0 P e 9 . P

) . represents the prediction error. The error is calculated as the
slope m and intercepty, from all respective LPs of the

observed maximum deviation from realized disturbances. For
aggregator.

L . ) . proof of concept, it is assumed that only 6.Rnd 7 from
2) Maximizing Social SurplusAfter collecting demand : :
. . AR .aggregatorl are constrained. The energy and reserve prices
bids from aggregators, the following optimization problem ‘8sed for scheduling flexible buildings are shown in Fig. 6
solved by the DSO at stef 9 g g. o

The optimization problems are formulated in YALMIP [44]

1 and solved using CPLEX [45].

r;lax Z ip}—,kMpi,k +y10—pi,k (34a) g [45]

“R e,
subject to Table Il

. SIMULATION SETUP

:I.I'LZTL < y < ’(YL(L’L‘ 34b
Pi e Pik = Ps e (34b) 5 Constrained LPs _ay, __ Line imits (kW) 3 (3/(KWhy)
") —fis Z DMip; e < fr (N ) Vi € Ni (34€) e 6,7 0.15 1,350 1-10°7

i€EN;

Within allowable line limits, (34) maximizes the social surplus In Fig. 7, comparison between the conventional DA DLMP
of the overall system. The LMixf'T()\kRTJr — )\kRT‘) € R™ method and the proposed robust distributed method is pre-
are non-zero for the binding constraints (34c). For binding lirmented. Both methods are simulated with similar robust con-
limits, (34) produces a new pricg?" (< A\;P4), increasing straints i.e. the worst-case disturbance set. The distributed
the social surplus of the overall system. It is assumed thatthod is terminated when line violation tolerance ef10—3

the maximump?® and minimump?" power in (34b) are MW is reached. In Fig. 7, non-zero DLMPs represent con-
inclusive in aggregator demand bids. gestion hours. The main causes of congestion are: (1) higher
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Fig. 7. The comparison between the total cost (top) and DLNdB#dmM) for
the proposed distributed and the conventional method. In the bottom plot, solid
lines represent conventional DLMPs and dashed lines distributed DLMPs.
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more, during high price periods3 and 14, compared to the
RT-UA case, the RT-A schedules less load. This is because the
RT-A schedule utilizes higher flexibility in congested hours,
allowing flexible loads to avoid these higher price periods.
The RT-A procedure for the constrained aggregataat

time stepl0 is elaborated in Fig. 9. Using demand flexibility,

it can be observed that aggregatois able to push down the
congestion price Xt < ADA). This willingness to consume
more proves that flexible loads are over-constrained, when
operated under unadjusted DA DLMPs. The comparison of

5.8

=
=
=
©“

=il | | | | |
T240 1,260 1,280 1,300 1,320 1,340
space conditioning requirements and (2) reserve placement 107° kw 1077
incentives at time period0 and 12. Furthermore, it can be 5.8 |- == AUrpsio) | 581 == M Lpso) |
observed that the magnitude of DLMPs continue to increase ¢ - g -0~~~ AULrio) | counn =77 Al Lro) |
from the time period onwards. This is due to the increase § sl 1 54l Tt |
in space conditioning requirements during day time. e e ’ e,
5.2 Sataeee] 92 e e
5 U I I IS I I I N
2,000 580 590 600 610 620 40 50 60 70
1,500 kw kw
2 1,000
Fig. 9. Real-time adjustment for the aggregatbr(top), and its LP’s
500 .
0 energy (bottom left) and reserve procurement (bottom right).
1,500
1,000 |- .
2 Table III
500 n THE AGGREGATOR1’S EXPERIENCEDLM S
0 -
Time ste
0 10 20 30 40 50 LM ($/MWh) p k)
1,500 8 9 10 11 12 13 14
ApA 02 22 56 89 144 221 335
ART 0 1.2 51 76 125 221 0
% 10 20 30 40 50

Time Periods

Fig. 8. The robust DA (top), the RT-UA (middle) and the RT-A ifom).
Time period24 represents exactly the midday.

DA LMs with the RT-A LMs for congested time steps is
presented in Table Ill. During congestion time stegs it
can be seen that?? < ADA. This lowering of RT-A LMs

improves the overall cost of consumption, as also depicted

The RT schedule uses the DA schedule as a reference8efig. 10. The relative cost improvement (REbf 30.2%
point at each steg:. For RT operation, receding horizon@nd 12.7% is observed for the case of RT-A schedule, com-
of 48 periods (1 day) is adopted [7]. In order to comparBafed to those of the DA and the RT-UA, respectively. Note
the effectiveness of the RT adjustment, two RT operations 4f&t due to the availability of flexibility, loads can consume
considered. First, the RT adjusted (RT-A) schedule based Bre in congested hours. This increases the scheduling cost
the RT DLMPs using the method described in Section 111-B {©r the RT-A case (1),cx) by 0.7%, compared to the RT-
found. Second, the RT unadjusted (RT-UA) schedule using BA® case. However, this increase in the cost gets heavily out-
DLMPs is also considered. The comparison of both schedul¥gighed by the improvement in the congestion cgst f.»),
along with the DA schedule is presented in Fig. 8. It cayhich is 94.78% and 69.3%, when compared to the DA and

be seen that the RT-UA schedule is over-constrained, whitlle RT-UA scheduling, respectively.

results in the underutilization of flexible loads. The RT-A
schedule removes this under utilization and allows the flexible
load to operate much closer to network line limits. Further-(

9%

sum

g(l)RT-A

g(l)RT-A

sum

SUM ) x 100, where x is the DA or RT-UA case.
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Fig. 10. Aggregatorl’s total cost for the DA, RT-A and RT-UA case.
. - | e S, 4
s ‘10‘ ‘ 150 ‘ gase Quadruple Octuple gase Quadruple Octuple
— . . Size of Aggregators Number of Aggregators
D ° % 2]
= 1 sege °e | S 100 | oo
S o?e .$. g ° .... L]
% 08} R g ,‘ <. e Fig. 12. Comparison of the solution time between distribwtad centralized
% ) v . £ 50-y o solution. The size (left) and number of aggregators (right) in the distribution
0.6 h grid of Fig. 5 are increased. The base case is given in Table Il. For the case
0.4 | | | 0 | ‘ | of the size of aggregators (left), compared to the base case, quadruple/octuple
50 100 150 200 50 100 150 200 means an increase in 4/8 times the size of LPs (in kW) contracted by
4 (Prediction Error %) ¢ (Prediction Error %) aggregators. For the case of the number of aggregators (right), compared to
3,000 z ‘ 40 : ‘ the base case, quadruple/octuple refers to an increase in 4/8 times the number
. *RT-UA *RT-UA of aggregators operating in the distribution grid.
&, 000ll°PA 30 [{«DA :
n [ B —
2 Q 20| .
& 1,000 | , i - i -
3 Na: 10| afsomarnpine | are carried out on a 2.4-GHz processor with 64-GB RAM.
i wonsl The mean time needed to compute each scaled scenario is
00 100 150 200 050100 150 200 plotted on Fig. 12. Compared to the centralized solution, it
§ (Prediction Error %) 5 (Prediction Error %) can be observed that even with an increase in the size of

the distribution grid, the distributed approach has a lower
Fig. 11. Number of iterations required to reach the globalnoptn by the computational time. However, with the increase in the size
distributed algorithm (top right), the increase in the DA cost (top left), costf t th tati ti | . Most
savings (bottom left) and the % CI (bottom right) observed with the RT—AQ aggrega 0I’§, € computation _'me also Increases. 0s
due to the increase in the prediction error. notably from Fig. 12, as the same sized number of aggregators

increases, the overall solution time drastically improVes.

A. Performance Evaluation
V. CONCLUSION AND FUTURE WORK

For the same simulation setup, to evaluate the performance_ . . i
of the proposed method, multiple simulations with varying | NiS Paper presents a distributed robust method to alleviate
prediction errors are performed. The results are presentéPgestion in the presence of flexible buildings in the distri-
in Fig. 11. It can be observed (top right of Fig. 11) that thBUt'O” grid. In partlcular_, a_l_two-step procedur(_e is advocated to
number of required iterations for the solution to converdgcrease the overall flexibility of the system. First, DA DLMPs
is always less thari50. As expected, the DA schedulingare obtained by incorporating robust load dynamics of build-

cost (top left of Fig. 11), in order to account for the worstings and information preservation of aggregators. Second, the

case disturbance realization, is observed to increase with anpl=~ 1S performed to improve the conservatism of DA robust

crease in the prediction error. Compared to the DA and RT-UA-MPS. Compared to previous studies on DLMPs, our pro-
case, the RCI and savings from the RT-A are also presenf&?ed method has an improved practical realizability as: (1) it
in Fig. 11. The RCI, compared to the DA case, increases igémplementable in a distributed manner, (2) it introduces RT-
the prediction error grows, advocating the importance of the ©© harness the flexibility from loads near RT, and (3) it
RT-A case. However, the RCI from the RT-UA case does ngPMPliments the combined DA and RT market frameworks,
show a large improvement. The first reason is because at higiéFady in place in many power systems. However, to perform
prediction errors (large DA DLMPs) the accuracy of demantfj€ integration _of the_pro_posed method into the current power
bids is compromised. Hence, these bids may misrepresS}fieM: more investigations are to be performed. The most
the true response of buildings. The second reason is becat@Ple ones consist of: (1) the interlinking market mechanism
for both RT operations (the RT-UA and RT-A case) actuzQetweenthe transmission and distribution system operators, (2)
disturbances experienced by buildings are considerably smafidvanced distributed algorithms (such as ADMM) to include
than the worst-case disturbances. Hence, by scheduling [B98-linéar power flows in the DSO problem while improving
consumption, the RT-UA case already somehow compensgfis Solution time and (3) the analysis of demand bids as a
the effect of large non zeros DA DLMPs. However, codtinction of the receding horizon length and DA DLMPs.
saving from the RT-UA case is still observed for the higher _ _ _ , ,

For a fair comparison, an increase in number and size (LPs) of aggregators

To eve}luate Scalabi”ty. of the prop_osgd meth0q1 100. 'UBSm the base cases is also accompanied by a proportional increase in line
for various scaled versions of the distribution grid of Fig. Bmits of the distribution grids.
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V1. APPENDIX
A. DSO-Aggregator Robust Counterparts
The robust counterpart for the DSO problem is:

min SN Jeum s (35a)
Pk iEN; kEN,
subject to
—H <Y Y DMip,, < fi OPAT AR (35b)
iEN,; kEN,
XS 1 = AXTS + B, P, i + Edig + AL Tk Ay, Tk
(35¢)
X;L,i-i-l = AX?% + ggpt k + Ed1 kTt )‘w ko-i kTt )‘w ko-i k
(35d)
min < ng < X'r_na:c (358)
mzn < Asump 7k S UT];ZI (359)
+ —
Awiw = Aw,, =E (35h)
A A P AT, >0 Vie N, VE e N, (35)
The robust counterpart of aggregaias:
min Z )‘dlmp WPkt 5 plkBplk (36)
Pik kEN,
subject to
(35¢)— (35i) Yk € Ny

B. Proof for Unique Solution of Robust Counterparts

http://dx.doi.org/10.1109/TPWRS.2017.2660065
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It can be observed that the robust DSO problem (35) has a
guadratic cost function and affine constraints. Furthermore,
the Hessian matrix of the quadratic cost is a positive definite
matrix. This makes the robust DSO problem a strictly convex
QP. Hence, its KKT conditions are necessary and sufficient,
and for a feasible problem the achieved solution is unique [41].
The robust aggregataermproblem follows similar arguments. If
the solution of the KKT conditions (37) of the robust DSO

problem is given as:

—sums* +sumx diffx c nes DAY
(ptk’ Hig o ik > Hik ’Mtk ’Vi,kv Vtk’)\ )

APA7). Then by comparison, this solution also satisfies the
KKT conditions of the robusi’* aggregator (38). This is
because the robust aggregator constraints are also contained
within the KKT conditions of the DSO problem. Hence, any
solution which satisfies the robust DSO problem is also a valid
solution for the robust aggregator problem. But the solution of
the robust aggregator problem may not be a valid solution for
the robust DSO problem. This is because aggregatiwes

not include line limits constraints of the robust DSO problem
[(B7b), (37c)]. However, it can be observed that due to the
robust DSO and aggregator problems being strictly convex,
the obtained solution must be unique. Hence, this uniqueness
enforces that any solution of the robust aggregator problem
must also be the solution of the robust DSO problem. However,
it must be noted here that due to the deployment of the worst-
case disturbance bounds, this unigue solution is optimal for the
worst-case and feasible for any other disturbance realization.

C. Coupling Constraint and Dual Decomposition

The Karush Kuhn Tucker (KKT) conditions for the robust consider a simplified version of the Lagrangian described

counterpart of the DSO problem are:
Ck+Bpi7k+MTDT()\DA+ *)\kDA7>+Bagg zk+BnC nc

ags Vi,
AT (g ) — AN TP — 0 (37a)
APAT (DM, — fi) =0 (37b)
ANA (=DMip, — f1) =0 (37¢)
TR (AT L — UfET) = 0 (37d)
A=A, + umm) 0 (37e)
pdt - (~AYp, ) = (37f)
R (—pig) =0 (379)
APAT APAT > (37h)
i i > 0 (37i)
(35b)— (35i) Vi € N;,Vk € Ny (37))
Similarly, the KKT conditions for the robust” aggregator is:
Ci + Bp, i + MIDTAPAT — APAT) £ BS, v, + BIS, vl
4+ Asum” ( u+sum u;]zum) Adiff diff u:%kk -0 (38a)
ah e (AT, = U) =0 (38b)
in e (AT U"”") =0 (38c)
Hik - (—ATp, ) = (38d)
peE (—pig) =0 (38e)
(35¢)— (35i), (37i) Vk € N (38f)

in (24), containing only two aggregators along with local
temperature and power limitations:

L= 2P fi 4 Jgumy + AP DMipy

Jr’/1Tk(*X1,lc+1 + AX1,k + BagePy i + Ed, &
AL, oLk + Ay, oLk) 1 p (AT

max

—ui’E’)

W1,k
T
+suma, + ALY DMap,
+I/2,1:k(7x2,k+1 + AXQ,k + Baggpg,k —+ Eag k
+>‘1—Z2,k021k + )\;Magyk) + Mg’k(Asume,k B ugzg;)

The above Lagrangian demonstrates how the DSO’s coupling
constraint (14b) splits among aggregators. Essentially, for
aggregatori, matrices M; (node mapping) and> (PTDF)
translate power consumption of aggregators to the line flow in
distribution grid. In the end, individual contributions of each
aggregator is summed u@{/;p, ;) to obtain the total line
flows in the distribution grid. Note that this is the only coupling
in the above Lagrangian. For a given coupling dmﬁIA, the
above presented Lagrangian can be equivalently written as
solving the following local robust aggregator problems [42]:

. T
g (APA) = Qyn Jsumi + A0 DMip,
1,k

s.t. Aggregator 1's energy requirements (40)

g2(AP4) = min Jgum, , + )\kDATDM2p2,k

P2 &

s.t. Aggregator 2’s energy requirements (41)
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and then iterating i) between aggregators (42a) and th
DSO (42b), until the convergence is achieved.

pin = alOPY), phy =200 (42a)
AT = P 4 ant) (42b)
In (42), if g(ADA’) = gl(ADA”) + ga(APA") then
heé)( 9)(APA") = DMypy', + DMaps', — fi, wherep?',

and p2 k are solutions of (40) and (41) respectively.
The first observation from the above mentioned method

e

(1]

(2]

(3]

is

that g(AP4) is differentiable, hence only one element existd4l

in its subdifferential [46]. Differentiability also implies that a
constant small enough step sizewill yield convergence [46].

For the case of our strictly convex problems (QP), this meari8l

that we can recover a unique global solution of the who

le

problem (see Section VI-B). The second observation is thag
aggregators [(40), (41)] handle uncertainties locally. Since

uncertainty sets are predefined in each robust aggreg

problem, the iterative link between aggregators and the DS

through global LMAP4 does not contain any uncertainty.
For two aggregators and two time steis= 1, 2), Fig. 13

and Fig. 14 show the progress of dual decomposition—baséa

subgradient method. For each iteration, aggregators inc
porate \P4" to find their local robust solutiongi’ o P

or-

These local solutions, when infeasible for the overall Dsd]

problem, propagate through the projected subgradient meth

od.

This method moves the local robust solutions in the directiEPO]
of its negative subgradient, until they converge to a unique

solution.

==k (Pyk t Pak) — fi
2k Pi ke 2ok PER)
(kP 2ok P5 )

Fig. 13. Visualization of dual decomposition-based subgrddmethod on

a small QP example. This example represents combined energy requirements

for aggregators, 0 < Zk (P15 + P2,x) < 4 and the quadratic cost
function, >~ (p1 & T p2 &) Tr|V|aIIy, the minimum of this problem is
zero energy requirements for both aggregatdt, [P1 kP2 = O] Hence,
coupling constrainty . (py; + P2,x) > 4 is introduced.

Dual Value

o \pat ||
— AEA'
0 I I I T

2 4 6 8
Iterations

10

Fig. 14. Dual variable updates for the subgradient methodigf 13.
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